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Abstract 

In this paper, we present a new approach for 
temperature prediction based on genetic simulated 
annealing techniques and high-order fuzzy time series, 
where the simulated annealing techniques are used to 
deal with the mutation operations of genetic algorithms. 
The proposed method uses genetic simulated annealing 
techniques to adjust the length of each interval in the 
universe of discourse to increase the forecasting 
accuracy rate. It can get a higher forecasting accuracy 
rate than the existing methods. 
 
1 Introduction 
 

It is obvious that people are always interested in 
oncoming events, where an event may be affected by 
many factors. If we can consider these many factors for 
dealing with forecasting problems, then we can get a 
higher forecasting accuracy rate. In recent years, some 
methods have been presented for dealing with 
forecasting problems [1]-[15]. 

In this paper, we present a new method for 
temperature prediction based on genetic simulated 
annealing techniques and high-order fuzzy time series, 
where the simulated annealing techniques [16] are used 
to deal with mutation operations of genetic algorithms. 
The proposed method uses genetic simulated annealing 
techniques to adjust the length of each interval in the 
universe of discourse for increasing the forecasting 
accuracy rate. It can get a higher forecasting accuracy 
rate than the existing methods. 
 
2 Fuzzy Time Series 
 

In [10]-[12], Song and Chissom presented the 
concepts of fuzzy time series based on the fuzzy set 
theory [17]. In the following, we briefly review the 
definitions of fuzzy time series from [3], [11] and [13]. 
Definition 2.1: Let Y(t) (t = …, 0, 1, 2, …) be the 
universe of discourse and be a subset of R. Assume that 
fi(t) (i = 1, 2, …) is defined in the universe of discourse 
Y(t), and assume that F(t) is a collection of fi(t) (i = 1, 
2, …), then F(t) is called a fuzzy time series of Y(t) (t 
= …, 0, 1, 2, …). 
Definition 2.2: Let F(t) be a fuzzy time series. If F(t) is 
caused by F(t-1), F(t-2), … , and F(t-n), then the 
nth-order fuzzy logical relationship is represented by 

F(t-n), …, F(t-2), F(t-1) → F(t),             (1) 
where F(t-n), …, F(t-2), F(t-1) and F(t) are fuzzy sets, 
“F(t-n), …, F(t-2), F(t-1)” is called the current state of 
the nth-order fuzzy logical relationship, and F(t) is called 
the next state of the nth-order fuzzy logical relationship. 
 
3 Basic Concepts of Simulated Annealing 

Algorithms and Genetic Algorithms 
 

In [16], Kirkpatrick et al. proposed the simulated 
annealing algorithm. A simulated annealing algorithm 
takes into account not only downhill move, but also 
permits uphill moves with an assigned probability 
depending on the “state temperature”. The basic concept 
of a simulated annealing algorithm is derived by 
observing the change of energy in a process in which 
materials solidify from the liquid state to the solid state. 
When the system’s temperature decreases gradually in 
the annealing schedule, if the energy of the material in a 
new state is lower than the energy of the material in the 
current state, then the system will replace the current 
state by the new state. Otherwise, whether the new state 
can be accepted or not depends on the probability p 
shown as follows: 
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where p denotes the probability that the system accepts 
the new state, T denotes the current system temperature, 
k denotes the Boltzmann’s constant, and ∆E denotes the 
difference between the energy of the new state and the 
energy of the current state. 

The concept of genetic algorithms was proposed 
by Holland [18], where a population consists of 
chromosomes and a chromosome consists of genes. The 
number of chromosomes in a population is called the 
“population size”. The reproduction operation, crossover 
operation and mutation operation of genetic algorithms 
can refer to [18], [19] and [20]. 
 
4 A New Method for Temperature 

Prediction Based on Genetic Simulated 
Annealing Techniques and High-Order 
Fuzzy Time Series 

 
In this section, we present a new method for 

temperature prediction based on genetic simulated 
annealing techniques and high-order fuzzy time series. 



The method is essentially a modification of the method 
presented in [7]. Table 1 shows the historical data of the 
daily average temperature from June 1996 to September 
1996 in Taipei, Taiwan [21]. Table 2 shows the historical 
data of the daily cloud density from June 1996 to 
September 1996 in Taipei, Taiwan [21]. In [2], the daily 
average temperature is called the “Main-Factor” of the 
fuzzy time series and the daily cloud density is called the 
“Second-Factor” of the fuzzy time series. First, based on 
Table 1, Table 2 and [7], we define the universe of 
discourse of the daily average temperature U = [23, 32] 
and define the universe of discourse of the daily cloud 
density V = [0, 100]. 
 
Table 1. Historical Data of the Daily Average Temperature 

from June 1996 to September 1996 in Taipei, Taiwan 
(Unit: °C) [21] 

   Month 
Day June July August September 

1 26.1 29.9 27.1 27.5 
2 27.6 28.4 28.9 26.8 
3 29.0 29.2 28.9 26.4 
4 30.5 29.4 29.3 27.5 
5 30.0 29.9 28.8 26.6 
6 29.5 29.6 28.7 28.2 
7 29.7 30.1 29.0 29.2 
8 29.4 29.3 28.2 29.0 
9 28.8 28.1 27.0 30.3 

10 29.4 28.9 28.3 29.9 
11 29.3 28.4 28.9 29.9 
12 28.5 29.6 28.1 30.5 
13 28.7 27.8 29.9 30.2 
14 27.5 29.1 27.6 30.3 
15 29.5 27.7 26.8 29.5 
16 28.8 28.1 27.6 28.3 
17 29.0 28.7 27.9 28.6 
18 30.3 29.9 29.0 28.1 
19 30.2 30.8 29.2 28.4 
20 30.9 31.6 29.8 28.3 
21 30.8 31.4 29.6 26.4 
22 28.7 31.3 29.3 25.7 
23 27.8 31.3 28.0 25.0 
24 27.4 31.3 28.3 27.0 
25 27.7 28.9 28.6 25.8 
26 27.1 28.0 28.7 26.4 
27 28.4 28.6 29.0 25.6 
28 27.8 28.0 27.7 24.2 
29 29.0 29.3 26.2 23.3 
30 30.2 27.9 26.0 23.5 
31  26.9 27.7  

 
Table 2. Historical Data of the Daily Cloud Density from June 

1996 to September 1996 in Taipei, Taiwan (Unit: %) 
[21] 

  Month 
Day June July August September 

1 36 15 100 29 
2 23 31 78 53 
3 23 26 68 66 
4 10 34 44 50 
5 13 24 56 53 
6 30 28 89 63 
7 45 50 71 36 
8 35 34 28 76 
9 26 15 70 55 

10 21 8 44 31 
11 43 36 48 31 
12 40 13 76 25 
13 30 26 50 14 
14 29 44 84 45 
15 30 25 69 38 
16 46 24 78 24 
17 55 26 39 19 
18 19 25 20 39 
19 15 21 24 14 
20 56 35 25 3 
21 60 29 19 38 
22 96 48 46 70 
23 63 53 41 71 
24 28 44 34 70 
25 14 100 29 40 
26 25 100 31 30 
27 29 91 41 34 
28 55 84 14 59 
29 29 38 28 83 
30 19 46 33 38 
31  95 26  

 
The proposed method is now presented as follows: 

Step 1: Partition the universe of discourse U = [Umin, 
Umax] into n intervals u1, u2, …, un, where u1 = [Umin, x1], 
u2 = [x1, x2], …, un = [xn-1, Umax], Umin denotes the 
minimum value in the universe of discourse U, Umax 
denotes the maximum value in the universe of discourse 
U, and x1  x≤ 2  …  x≤ ≤ n-1. Partition the universe 
of discourse V = [Vmin, Vmax] into m intervals v1, v2, …, 
vm, where v1 = [y1, Vmax], v2 = [y2, y1], …, vm = [Vmin, 

ym-1], Vmin denotes the minimum value in the universe of 
discourse V, Vmax denotes the maximum value in the 
universe of discourse V, and y1  y≥ 2  …  y≥ ≥ m-1. 
Define each chromosome consisting of n-1 “X genes” 
and m-1 “Y genes”, where the contents of each 
chromosome are represented by an array <x1, x2,…, xn-1, 
y1, y2,…, ym-1>,  x1 ≤  x2  …  x≤ ≤ n-1, and y1  y≥ 2 

 …   y≥ ≥ m-1. In this paper, we assume that a 
population consists of 30 chromosomes and assume that 
the system randomly generates 30 chromosomes as the 
initial population. 
Step 2: Define linguistic terms of the main-factor 
represented by fuzzy sets A1, A2, …, An, shown as 
follows: 

A1 = 1/u1 + 0.5/u2 + 0/u3 + 0/u4 + 0/u5 + … + 0/un-2 + 0/un-1 + 0/un, 
A2 = 0.5/u1 + 1/u2 + 0.5/u3 + 0/u4 + 0/u5 + … + 0/un-2 + 0/un-1 + 

0/un, 
A3 = 0/u1 + 0.5/u2 + 1/u3 + 0.5/u4 + 0/u5 + … + 0/un-2 + 0/un-1 + 

0/un, 

…  
An = 0/u1 + 0/u2 + 0/u3 + 0/u4 + 0/u5 + … + 0/un-2 + 0.5/un-1 + 1/un. 

Define linguistic terms of the second-factor represented 
by fuzzy sets B1, B2, …, Bm, shown as follows: 

B1 = 1/v1 + 0.5/v2 + 0/v3 + … + 0/vm-2 + 0/vm-1 + 0/vm, 
B2 = 0.5/v1 + 1/v2 + 0.5/v3 + … + 0/vm-2 + 0/vm-1 + 0/vm, 

B3 = 0/v1 + 0.5/v2 + 1/v3 + … + 0/vm-2 + 0/vm-1 + 0/vm, 

…  
Bm = 0/v1 + 0/v2 + 0/v3 + … + 0/vm-2 + 0.5/vm-1 + 1/vm. 

Based on [22], fuzzify the historical data of the 
main-factor and the second-factor, respectively, based on 
each chromosome of the population. For example, if the 
value of the main-factor of day i belongs to interval uj, 
and fuzzy set Aj whose maximum membership value 
occurs at interval uj, then the value of the main-factor of 
day i is fuzzified into Aj, where 1 ≤ j ≤ n; if the value of 
the second-factor of day i belongs to interval vs, and 
fuzzy set Bs whose maximum membership value occurs 
at vs, then the value of the second-factor of day i is 
fuzzified into Bs, where 1 ≤ s ≤ m.  
Step 3: Construct two-factors kth-order fuzzy time series 
relationship groups, where k ≥ 2. 
Step 4: Forecast the values based on the principles 
presented in [7]. 
Step 5: Perform the reproduction operations based on 
the roulette wheel selection method [19]. In this paper, 
the average forecasting error rate (AFER) is used as the 
fitness value of each chromosome in the genetic 
algorithm for temperature prediction, where. 
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The smaller the fitness value (Note: The fitness value is 
the average forecasting error rate) of a chromosome, the 
higher the chance of the chromosome to be chosen for 
put into the mating pool. In this paper, the system 
chooses chromosomes from the current population into 
the mating pool according to their reciprocal fitness 
values. For example, let fi denote the fitness value of the 
ith chromosome and let ri be the reciprocal fi, i.e., ri = 1/fi. 
The selected probability pi of the ith chromosome is 
denoted by ∑=

j
jii rrp . The larger the selected 



probability of a chromosome, the higher the chance of 
the chromosome to be chosen for put into the mating 
pool. Repeatedly perform the reproduction operations, 
until the number of chromosomes in the mating pool is 
the same as the number of chromosomes in the current 
population. Then, let the mating pool become the current 
population. 
Step 6: Randomly select two chromosomes from the 
population to perform the crossover operations, until all 
chromosomes in the population have been selected. If 
the system randomly generates a real value between zero 
and one that is smaller than or equal to the crossover rate, 
then the system randomly selects a crossover point of a 
X gene and a crossover point of a Y gene from the two 
selected chromosomes of the current population to 
exchange genes after the crossover point. Otherwise, the 
selected chromosomes will not perform the crossover 
operation. In this paper, the crossover rate is set to 0.8. 
When performing the crossover operation, the system 
randomly selects one crossover point of X genes and one 
crossover point of Y genes, where the crossover point of 
X genes is an integer between 1 and n-1, n is the number 
of X genes, the crossover point of Y genes is an integer 
between 1 and m-1, and m is the number of Y genes. 
Furthermore, if the derived values of the chromosomes 
are not sorted by the values of genes in an ascending 
sequence, the system will sort the values of genes in the 
chromosomes in an ascending sequence. 
Step 7: Use the simulated annealing mutation (SAM) 
algorithm shown in Fig. 1 to perform the mutation 
operations. For each chromosome in the population, the 
system generates a real value between zero and one to 
determine whether the system performs the simulated 
annealing mutation or not. If the real value generated by 
the system for a chromosome is smaller than or equal to 
the mutation rate (Note: In this paper, the mutation rate 
is 0.05), then the system applies the simulated annealing 
mutation algorithm to perform the mutation operation on 
this chromosome. Otherwise, the system will not 
perform the mutation operation on this chromosome. In 
Fig. 1, Tinitial denotes the initial temperature; T denotes 
the current system temperature; Tfrozen denotes the frozen 
temperature; C and C’ denote the current chromosome C 
and the newly generated chromosome C’, respectively; 
we use the average forecasting rate (AFER) shown in 
formula (3) as the fitness value of each chromosome in 
the genetic algorithm for temperature prediction; ∆f 
denotes the difference between the fitness value 
fitness(C’) of the newly generated chromosome C’ and 
the fitness value fitness(C) of the current chromosome C; 
α denotes the annealing constant. First, the system 
randomly chooses the ith X gene and the jth Y gene from 
current chromosome C, and then replaces the value xi of 
the ith X gene and the value yj of the jth Y gene of 
current chromosome C by the random numbers xi

* and 
yj

*, generated by system, respectively, to form the new 
generated chromosome C’. Then, the system calculates 
the fitness value of chromosome C and chromosome C’, 
respectively, and then calculates their difference ∆f. If ∆f 
is smaller than or equal to zero, then the newly generated 

chromosome C’ is always allowed to replace the current 
chromosome C. Otherwise, the system is allowed to 
accept the newly generated chromosome C’ depending 
on the probability e(-∆f/T). In this situation, if the random 
number generated by the system is smaller than the 
probability e(-∆f/T), then the newly generated chromosome 
C’ replaces the current chromosome C. Repeatedly 
perform the above process, until the current system 
temperature T is smaller than the frozen temperature 
Tfrozen. In this case, the simulated annealing mutation 
process finishes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step
forec
popu
num
smal
solut
Stop

Visu
aver
the 
algo
anne
algo
June
we 
main
inter
seco
inter
popu
com
prop
Tabl
calcu
and 
cross
Procedure SAM (Tinitial, Tfrozen, α) 
begin 

T ← Tinitial; 
while (T > Tfrozen) do 

Randomly choose the ith X gene and jth Y gene
of chromosome C, where 1 ≤ i ≤ n, 1 ≤ j ≤ m, n
is the number of X genes of chromosome C,
and m is the number of Y gene from
chromosome C, and replace the value xi of the
ith X gene and the value yj of the jth Y gene of
chromosome C by the random numbers xi

* and
yj

* generated by the system, respectively, to
derive newly generated chromosome C’(i.e., C’
← < x1, x2, …, xi

*, …, xn, y1, y2, …, yj
*, …,

ym >); 
Let ∆f ← fitness(C’) – fitness(C); 
r ← random number between 0 and 1 generated
by the system; 
if  ∆f ≤ 0 or r < e (-∆f / T)  then C ← C’; 
T ← T × α; 

end; 
return C 

end.

Fig. 1. Simulated annealing mutation algorithm. 

 8: Based on formula (3), calculate the average 
asting error rate (AFER) of each chromosome in the 
lation. If the system has evolved a predefined 
ber of generations, then the chromosome that has the 
lest average forecasting error rate is the optimal 
ion to be used to deal with the forecasting problem; 
. Otherwise, go to Step 5. 

We have implemented the proposed method using 
al Basic version 6.0 on a Pentium 4 PC. We use the 
age forecasting rate (AFER) shown in formula (3) as 
fitness value of each chromosome in the genetic 
rithm for temperature prediction. We use different 
aling constants in the simulated annealing mutation 
rithm to forecast the daily average temperature from 
 1996 to September 1996 in Taipei, Taiwan, where 
partition the universe of discourse U of the 
-factor (i.e., the daily average temperature) into 9 
vals and partition the universe of discourse V of the 
nd-factor (i.e., the daily cloud density) into 7 
vals. In other words, each chromosome in a 
lation consists of 8 X genes and 6 Y genes. A 

parison of average forecasting error rates of the 
osed method with the existing methods is shown in 
e 3, where the average forecasting error rates are 
lated by executing the proposed method three times, 

the number of generations, the population size, the 
over rate, the mutation rate, the initial temperature 



and the frozen temperature are 1000, 30, 0.8, 0.05, 100 
and 0.0001, respectively. From Table 3, we can see that 
the proposed method gets smaller forecasting error rates 
than the methods presented in [2] and [7]. That is, the 
proposed method gets higher forecasting accuracy rates 
than the methods presented in [2] and [7] for dealing 
with temperature prediction. 
 
Table 3. A Comparison of the Average Forecasting Error 

Rates of the Proposed Method with the Existing 
Methods 

Window Basis Month 
w = 2 w = 3 w = 4 w = 5 W = 6 w = 7 w = 8

June 2.88% 3.16% 3.24% 3.33% 3.39% 3.53% 3.67%
July 3.04% 3.76% 4.08% 4.17% 4.35% 4.38% 4.56%

August 2.75% 2.77% 3.30% 3.40% 3.18% 3.15% 3.19%

Chen’s 
Method 

[2] 

September 3.29% 3.10% 3.19% 3.22% 3.39% 3.38% 3.29%
Order 

Month First 
Order 

Second 
Order 

Third 
Order 

Fourth 
Order 

Fifth 
Order 

Sixth 
Order 

Seventh 
Order

Eighth 
Order

June 1.44% 0.47% 0.50% 0.49% 0.49% 0.50% 0.49% 0.46%
July 1.33% 0.46% 0.50% 1.50% 0.50% 0.49% 0.50% 0.50%

August 1.16% 0.48% 0.48% 0.49% 0.50% 0.49% 0.50% 0.49%

Lee et 
al’s 

Method 
[7] 

September 1.28% 0.98% 1.02% 1.12% 1.02% 0.74% 0.86% 0.50%
Order 

Annealing 
Constant α Month First 

Order 
Second 
Order 

Third 
Order 

Fourth 
Order 

Fifth 
Order 

Sixth 
Order 

Seventh 
Order

Eighth 
Order

June 0.79% 0.44% 0.42% 0.42% 0.42% 0.44% 0.40% 0.40%
July 0.66% 0.45% 0.42% 0.41% 0.41% 0.40% 0.41% 0.40%

August 0.64% 0.43% 0.47% 0.40% 0.41% 0.38% 0.40% 0.45%
0.25 

September 0.69% 0.58% 0.59% 0.57% 0.56% 0.57% 0.58% 0.47%
June 0.84% 0.50% 0.45% 0.42% 0.38% 0.43% 0.39% 0.46%
July 0.66% 0.50% 0.47% 0.44% 0.40% 0.38% 0.44% 0.42%

August 0.69% 0.40% 0.38% 0.37% 0.37% 0.39% 0.42% 0.45%
0.5 

September 0.66% 0.62% 0.59% 0.59% 0.56% 0.54% 0.56% 0.53%
June 0.79% 0.46% 0.42% 0.44% 0.42% 0.41% 0.46% 0.39%
July 0.62% 0.46% 0.45% 0.44% 0.44% 0.41% 0.40% 0.40%

August 0.66% 0.40% 0.40% 0.40% 0.36% 0.41% 0.39% 0.44%

The 
Proposed 
Method 

 0.9 

September 0.62% 0.59% 0.61% 0.57% 0.54% 0.59% 0.57% 0.50%

 
5 Conclusions 

In this paper, we have presented a new method for 
temperature prediction based on genetic simulated 
annealing techniques and high-order fuzzy time series, 
where the simulated annealing techniques are used to 
deal with the mutation operations of the genetic 
algorithms. The proposed method uses genetic simulated 
annealing techniques to adjust the length of each interval 
in the universe of discourse for temperature prediction to 
increase the forecasting accuracy rate. From Table 3, we 
can see that the proposed method gets smaller average 
forecasting error rates than the methods presented in [2] 
and [7]. That is, the proposed method gets higher 
forecasting accuracy rates than the methods presented in 
[2] and [7]. 
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