

Swarm Search for Fast Face Detection with Neural Networks

Xinjian Fan, Masanori Sugisaka
Department of Electrical and Electronic Engineering, Oita University, Japan

Email: {msugi, fxinjian}@cc.oita-u.ac.jp

Abstract: This paper presents the application of
particle swarm optimization (PSO) to improve the search
speed of neural network based face detection problems.
The method is based on the idea that the task of finding a
well-matched subwindow (face) can be formulated as an
integer nonlinear optimization problem (INLP). To find
a face, we only need to find a local maximum filter
response which value is above a given threshold. The
proposed method has been tested and examined with a
set of 42 images to demonstrate its effectiveness. The
results confirm the potential of the proposed approach
and show its superiority over the classical technique.

1. Introduction

Face detection is a very important task that serves as
the first step of a large area of applications: automated
face recognition, secure access control, advanced
human-computer interfaces, etc. Its accuracy and
efficiency have a direct impact on the usability of the
whole system.

Face detection has been a well researched problem
and there are many approaches on it [1]. Up to now one
kind of the most successful methods is known as neural
network-based methods [2-7]. In these methods, a face
model (filter) is first learned from a large number of
examples (face images and non-face images). And then a
sliding window is used to scan all possible subwindows
across multiple-scale images.

However, these methods are generally
computationally expensive because: (a) the search
window is a high-dimensional vector that has to be
classified in a very non-linear space; (b) there are
hundreds of thousands of windows to search. Although
many efforts have been done to reduce the runtime of
neural network based methods, most of them focused on
reducing the computational complexity of classifiers
[4],[5]. Only a few attentions were given to improving
the search efficiency. In Ref. [6], the search window
moves every q pixels (q=3~5) instead of every pixel.
Thus the number of searched windows is only about 1/q2
of the exhaustive search, but with the disadvantage of
lowering the system’s performance. Many methods use
skin color information to limit the search area [6],[7].
But color information is not always able to be used and it
is very difficult to build a skin color model robust to
illumination changes.

In this paper, to reduce computational cost while
retaining high detection accuracy, we propose a new

method to speed up neural network (NN) based face
detection systems. The method is based on the idea that
the face search (FS) problem can be formulated into an
integer nonlinear optimization problem (INLP). To find
a face, we only need to find a local maximum filter
response which is above a threshold. The integer
variables are parameters that represent a subwindow in
the image. The objective function is based on the output
of the face filter.

PSO is a novel evolutionary computation (EC)
technique [8], which has been improved and applied to
various problems. Although the original algorithm was
basically developed for continuous optimization problem,
it can be expanded to handle discrete variables easily.
Furthermore, PSO has only a few parameters that make
it easy-adjusted to get better performance. Therefore,
PSO is expected to be suitable for FS formulated as an
INLP.

Based on a NN-based face filter, this paper presents a
PSO for the FS problem formulated as an INLP. The
feasibility of the proposed method is demonstrated and
compared with the exhaustive search method on a set of
42 test images with promising results. In this paper, we
assume that there is only one face contained in the test
image. The extension of the method to detect multiple
faces will be done in our future work.

2. Neural network based face filter

The purpose of the face filter is to classify a window
of size 20×20 pixels extracted from an image, as a face
or as a non-face.

We use a retinally connected neural network [3] to
serve as the face filter. The network takes a 20×20 pixel
window as input. Each hidden unit receives inputs only
from part of the input layer (called a receptive field).
There are 3 kinds of receptive fields: four 10×10 pixel
regions, sixteen 5×5 pixel regions, and six 20×5 pixel
overlapping horizontal stripes. Each of these receptive
fields has full connection to two hidden neurons. It has a
single output. The output is a real value from -1.0 to 1.0,
giving the likelihood as to what extent the input window
looks like a face.

3. Formulation of FS as an INLP

Figure 1 shows a 3D plot of the neural network output
with the image on the left as input. The highest peak
represents the face location. It can be seen that the face
filter is very selective: it responds strongly within a

several pixel radius of the face while its output on the
background is low. Moreover, around the face, the
output of the neural filter is a monotonous and growing
function. The properties lead to the following heuristic:

The face search (FS) problem can be formulated as an
integer nonlinear optimization problem (INLP). To find
a face, we only need to find a local maximum filter
response which value is above a threshold. Let T
represent an input image, SW represent a subwindow
and dv be its detection value (the corresponding output
of the neural network). With these notations the FS
problem can be stated as:

arg max () dv ∀ ∈SW SW SW T (1)
If ()dv SW is higher than a given threshold, the
corresponding portion of SW is declared as a face.

4. Particle swarm optimization

Particle swarm optimization (PSO) is a novel
evolutionary computation method, modeled after the
social behavior of flocks of birds [8]. PSO is a
population based search process where individuals,
referred to as particles, are grouped into a swarm. Each
particle in the swarm represents a candidate solution to
the optimization problem at hand. The performance of
particles is measured using a predefined fitness function
which encapsulates the characteristics of the
optimization problem.

Each particle i maintains the following information:
Xi, the current position of the particle; Vi, the current
velocity of the particle; pbesti, the personal best position
discovered by the particle so far, and also the best
position found by the entire swarm so far, denoted by
gbest. All particles start with randomly initialized
velocities and positions. At iteration step t, the current
velocity and position (searching point in the solution
space) are updated by:

1 1

2 2

(1) () ()(())
 ()(())

i i i i

i

t t c r t pbest t
c r t gbest t
ω+ = + −

+ −

V V X
X (2)

(1) () (1)i i it t t+ = + +X X V (3)
where w is the inertia weight, c1 and c2 are the
acceleration constants, r1(t) and r2(t) ~ U(0, 1). The
velocity of a particle will be set to a predetermined
maximum velocity (Vmax) if it exceeds Vmax.

The features of the algorithm can be summarized as
follows:

(a) PSO searches the solution space using a group of
searching points like genetic algorithm (GA) and the
searching points gradually get close to the optimal point
using their pbests and the gbest.

(b) As explained in Ref. [9], the first term of the right
side of Equ. (2) is corresponding to the exploration of
the search space. The second and third terms of that are
corresponding to the exploitation of the best solutions
found so far. Namely, the method has a flexible and
well-balanced mechanism to utilize exploration and
exploitation in the search procedure.

(c) The original PSO was originally developed for
nonlinear optimization problems with continuous
variables. However, the method can be expanded to
discrete problems easily [10].

(d) Because the update process of PSO is based on
simple equations, the algorithm is easy to implement and
computing economically. In addition, only a few input
parameters need to be adjusted in PSO which makes it
easy-adjusted to get better performance.

Due to the above features, PSO is expected to be
suitable for the FS problem formulated as an INLP.

5. Face search using PSO

The main steps of the proposed method are shown in
Figure 2. In the following, we will describe the approach
in detail.

5.1 Encoding and rescaling

In our problem, each particle represents a subwindow
in the input image. We use its center (Cx, Cy) and length
S to encode a subwindow. To evaluate subwindows of
different sizes using the neural network, we should
rescale them to the size of 20×20 (the input size of the
neural network). However, if this computation is done on
every size of subwindows, it will be very time-
consuming. To avoid it, we first build an image
pyramid†:

Fig. 1 left: an input image; right: 3D view of the neural
network output, obtained by superposing the outputs of
subwindows at all scales.

Input image

Particle flying

Output the found
window and stop

Fitness evaluation
(Trained face filter)Preprocessing

Stopping
criterion?

Y

N

PSO

Rescaling

Encoding subwindows
 (particles)

Fig. 2 Main steps of the proposed method

, , , , , k k L L

W H W H W HW H
q q q q q q

× × × × (4)

where W and H are the width and height of the input
image respectively, and q is the scale factor. The top
level (level L) should have a size more than 20×20:

min(,) 20L

W H
q

≥ , gives

ln(min(,)) ln 20
ln

W HL
q

⎢ ⎥−
= ⎢ ⎥
⎣ ⎦

 (5)

Then we let S to be chosen among the following
geometric sequence†:

20, 20 , , 20 , 20k Lq q q (6)

For a subwindow (, , 20)k T
x yC C q⎢ ⎥= ⎣ ⎦SW , we find

its mapped 20×20 window ' '(, , 20)T
x yC C′ =SW in level

k of the pyramid by:

' ', yx
x yk k

CC
C C

q q
⎢ ⎥⎢ ⎥

= = ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (7)

So each particle X is constructed as (, ,)T
x yC C k=X .

Cx, Cy and k are defined in [10, W-10], [10, H-10] and [0,
L] respectively.

5.2 Preprocessing

Before a 20×20 window is passed to the trained
neural network, it is preprocessed with lighting
correction (by subtracting a best fit linear function) and
histogram equalization as in Ref. [2],[3]. The former
reduces the effect of different lighting conditions and the
latter improves contrast across the window.

5.3 Fitness evaluation

To evaluate each particle (subwindow), we directly
use its detection value (the corresponding output of the
neural filter): the larger its detection value (dv), the more
the subwindow resembles a face. The fitness function

()f SW is given as
() () f dv= ∈SW SW SW T (8)

where T is the input image and SW is a subwindow,
() [1, 1]dv ∈ −SW .
The corresponding subwindow of a particle may go

beyond the image’s boundary even if all its variables lie
in the search boundary. To guarantee feasibility of
solutions, a random repair method (RRM) is investigated
in this paper. If a particle is checked to be infeasible, it
will be forced to “fly” to a new position, which is
randomly generated but feasible. The method works as
follows:

If ∉SW T , then
Step 1: Randomly generate a new position ′SW .
Step 2: If ′∈SW T , replace SW with ′SW ;

otherwise, go to step 1.

The proposed RRM has proven more efficient for our
problem than the traditional penalty approach [11].

5.4 Particle flying

Based on their fitness, particles in the swarm are
guided by Equ. (2) and (3) to fly to possible face regions
in the image. New (Cx, Cy, k) generated by Equ. (2) and
(3) are real values. When corresponding to a subwindow
in the input image, they are transformed into integers by
using the floor function. During flying, if a variable
extends the defined search boundary, it will be set to the
closest limit, i.e.

min min

max max

 if

 if
j j j

j
j j j

x x x
x

x x x

<⎧⎪= ⎨ >⎪⎩
 (9)

where xjmin and xjmax are respectively the lower and upper
search limit of variable xj, jx ∈X .

5.5 Stop criterion

The algorithm is stopped when 1) a “face” is found –
the detection value of the best particle is above the given
threshold or 2) the maximum iteration number is reached.

6. Experiments

A number of experiments were performed to evaluate
the proposed method. The experiments were performed
on 42 images with complex backgrounds. Some of the
images were chosen from CMU Test Set [12] and other
Internet resources; the others were taken by us in an
indoor environment using a CCD camera. Each image
contains only one face and all the faces can be detected
by the neural filter. All the images have the same size of
320×240 and the face size ranges from 34×34 to
178×178. The threshold of the neural network output
was set to 0.1.

According to pre-simulation, the parameters of PSO
were set as:

c1, c2: 0.2,
w: 1.2,
Vmax: 0.2×(Xmax-Xmin),
Swarm size P: 60,
Maximum iteration number MaxIt is set to 70. But

one restart is allowed, i.e., if the algorithm fails to find a
face within MaxIt it will be re-initialized and perform a
new search.

For each image in the test set, we ran our algorithm
100 times. The total detection results are listed in Table
1. Some examples are shown in Figure 3. The time
consuming was reported on an AMD Athlon 750 MHz
PC with Windows 2000 as its OS.

As shown in Table 1, the proposed search method
yielded a high success rate (93.6%) on average (the best
is 100% and the worst is 72%). Moreover, about 39% of
the failures are because PSO fell into a false detection,
the other failures are due to non-convergence. A further
reduction of false detections can be achieved by
arbitrating among multiple networks [3]. From the † Each term in Equ. (4) and (6) is transformed from a real value to an

integer value by using the floor function.

examples shown in Figure 3, we can see that the
proposed method maintains robustness in images which
contain faces under a very wide range of conditions
including scale, pose, position, complex backgrounds,
illumination conditions, etc.

Table 2 gives the comparison of the proposed search
method (called swarm search) with the exhaustive
search method. It’s clear that the time consuming and the
number of subwindow evaluations of the proposed
method are much less than those of the exhaustive search.
Although with a little loss of detection rate (due to non-
convergence), a great speedup has been achieved by
using the swarm search compared to using the
exhaustive search.

The method proposed by Viola and Jones [13] is
about 2.7 times faster than ours even performing an
exhaustive search. The reason is that they use a
computationally extremely efficient face filter, which is
made of a boosted cascade of classifiers built with the
AdaBoost algorithm. However, it is possible to combine
our swarm search method with their face filter to make a
more powerful face detection system.

7. Conclusion

This paper presents a new search method for NN-
based face detection. The proposed method formulates
the problem of face search into an integer nonlinear
optimization problem (INLP) and expands the basic PSO

to solve it. The feasibility of the proposed method is
demonstrated on a set of 42 images with promising
results. With fine-adjusted parameters, PSO only
requires less than 2000 evaluations of subwindows for
finding the face in an image. The result is much more
effective and superior over the classical exhaustive
search method. Many object detection problems can be
formulated as an INLP and the results indicate the
possibility of PSO as a practical tool for various INLPs
of object detection.

However, we have found that the method doesn’t
work well on some images, especially when the face size
is very small. How to improve the robustness is the
future work.

References

[1] M.H. Yang, D. Kriegman and N. Ahuja, “Detecting faces

in images: a survey”, IEEE Trans. Pattern Anal. & Mach.
Intell., vol.24, no.1, pp.34-58, 2002.

[2] K.K. Sung and T. Poggio, “Example-based learning for
view-based human face detection”, IEEE Trans. Pattern
Anal. & Mach. Intell., vol.20, pp.39-50, 1998.

[3] H.A. Rowley, “Neural Network-Based Face Detection”,
Thesis submitted for the degree of Doctor of Philosophy,
School of Computer Science, Carnegie Mellon University,
1999.

[4] L. Huang, A. Shimizu, Y. Hagihara and H. Kobatake,
“Face detection from cluttered images using a polynomial
neural network”, Proc. Conf. on Image Processing,
pp.669-672, Thessaloniki, Greece, 2001.

[5] B. Fasel, “Fast multi-scale face detection”, Technical
Report COM-98-04, IDIAP, 1998.

[6] R. Feraud, O. J. Bernier, J. Viallet, and M. Collobert, “A
fast and accurate face detector based on neural networks”,
IEEE Trans. Pattern Anal. & Mach. Intell., vol.23, no.1,
pp.42-53, Jan. 2001.

[7] S. Karungaru, M. Fukumi and N. Akamatsu, “Human face
detection in visual scenes using neural networks”, IEEJ
Trans., vol.122-C, no.6, pp.995-1000, 2002.

[8] J. Kennedy and R. Eberhart, "Particle swarm
optimization", Proc. IEEE Int’l Conf. on Neural Networks,
vol.4, pp.1942-1948, Perth, Australia, 1995.

[9] Y. Shi and R. Eberhart, "A modified particle swarm
optimizer", Proc. IEEE Int’l Conf. Evolutionary
Computation, pp.69-73, Anchorage, 1998.

[10] H. Yoshida, Y. Fukuyama, K. Kawata, S. Takayama, and
Y. Nakanishi, “A particle swarm optimization for reactive
power and voltage control considering voltage security
assessment”, IEEE Trans. Power Systems, vol.15, no.4,
pp.1232-1239, 2001.

[11] Z. Michalewicz, “A survey of constraint handling
techniques in evolutionary computation methods”, Proc.
4th Annual Conf. on Evolutionary Programming, MIT
Press, Cambridge, MA, pp.135-155, 1995.

[12] CMU Test Set:
http://vasc.ri.cmu.edu/idb/images/face/frontal_images/ima
ges.tar

[13] P. Viola and M. Jones, “Robust real-time object
detection”, Proc. 2nd Int’l Workshop on Statistical and
Computational Theories of Vision, Vancouver, Canada,
2001.

Table 2: Swarm search vs. exhaustive search

 Swarm search Exhaustive search* Ratio
ANSEs 1965 193737/2 1 : 49
APT (ms) 250 20169/2 1 : 40

* Because we only consider the single-face detection
problem in this paper, for fair comparison, we suppose
that it takes only half of an exhaustive search to find a
face.

Table 1: Experimental results

Success False Non-convergence ANSEs APT (ms)
93.6% 2.52% 3.88% 1965 250

False: false detection rate; ANSEs: Average Number of
Subwindow Evaluations; APT: Average Processing
Time.

Fig. 3 Examples from the test set

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

