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Abstract: This paper presents the application of 
particle swarm optimization (PSO) to improve the search 
speed of neural network based face detection problems. 
The method is based on the idea that the task of finding a 
well-matched subwindow (face) can be formulated as an 
integer nonlinear optimization problem (INLP). To find 
a face, we only need to find a local maximum filter 
response which value is above a given threshold. The 
proposed method has been tested and examined with a 
set of 42 images to demonstrate its effectiveness. The 
results confirm the potential of the proposed approach 
and show its superiority over the classical technique. 
 
 
1. Introduction 
 

Face detection is a very important task that serves as 
the first step of a large area of applications: automated 
face recognition, secure access control, advanced 
human-computer interfaces, etc. Its accuracy and 
efficiency have a direct impact on the usability of the 
whole system. 

Face detection has been a well researched problem 
and there are many approaches on it [1]. Up to now one 
kind of the most successful methods is known as neural 
network-based methods [2-7]. In these methods, a face 
model (filter) is first learned from a large number of 
examples (face images and non-face images). And then a 
sliding window is used to scan all possible subwindows 
across multiple-scale images. 

However, these methods are generally 
computationally expensive because: (a) the search 
window is a high-dimensional vector that has to be 
classified in a very non-linear space; (b) there are 
hundreds of thousands of windows to search. Although 
many efforts have been done to reduce the runtime of 
neural network based methods, most of them focused on 
reducing the computational complexity of classifiers 
[4],[5]. Only a few attentions were given to improving 
the search efficiency. In Ref. [6], the search window 
moves every q pixels (q=3~5) instead of every pixel. 
Thus the number of searched windows is only about 1/q2 
of the exhaustive search, but with the disadvantage of 
lowering the system’s performance. Many methods use 
skin color information to limit the search area [6],[7]. 
But color information is not always able to be used and it 
is very difficult to build a skin color model robust to 
illumination changes. 

In this paper, to reduce computational cost while 
retaining high detection accuracy, we propose a new 

method to speed up neural network (NN) based face 
detection systems. The method is based on the idea that 
the face search (FS) problem can be formulated into an 
integer nonlinear optimization problem (INLP). To find 
a face, we only need to find a local maximum filter 
response which is above a threshold. The integer 
variables are parameters that represent a subwindow in 
the image. The objective function is based on the output 
of the face filter. 

PSO is a novel evolutionary computation (EC) 
technique [8], which has been improved and applied to 
various problems. Although the original algorithm was 
basically developed for continuous optimization problem, 
it can be expanded to handle discrete variables easily. 
Furthermore, PSO has only a few parameters that make 
it easy-adjusted to get better performance. Therefore, 
PSO is expected to be suitable for FS formulated as an 
INLP. 

Based on a NN-based face filter, this paper presents a 
PSO for the FS problem formulated as an INLP. The 
feasibility of the proposed method is demonstrated and 
compared with the exhaustive search method on a set of 
42 test images with promising results. In this paper, we 
assume that there is only one face contained in the test 
image. The extension of the method to detect multiple 
faces will be done in our future work. 
 
2. Neural network based face filter 
 

The purpose of the face filter is to classify a window 
of size 20×20 pixels extracted from an image, as a face 
or as a non-face. 

We use a retinally connected neural network [3] to 
serve as the face filter. The network takes a 20×20 pixel 
window as input. Each hidden unit receives inputs only 
from part of the input layer (called a receptive field). 
There are 3 kinds of receptive fields: four 10×10 pixel 
regions, sixteen 5×5 pixel regions, and six 20×5 pixel 
overlapping horizontal stripes. Each of these receptive 
fields has full connection to two hidden neurons. It has a 
single output. The output is a real value from -1.0 to 1.0, 
giving the likelihood as to what extent the input window 
looks like a face. 
 
3. Formulation of FS as an INLP 
 

Figure 1 shows a 3D plot of the neural network output 
with the image on the left as input. The highest peak 
represents the face location. It can be seen that the face 
filter is very selective: it responds strongly within a 



several pixel radius of the face while its output on the 
background is low. Moreover, around the face, the 
output of the neural filter is a monotonous and growing 
function. The properties lead to the following heuristic:  

The face search (FS) problem can be formulated as an 
integer nonlinear optimization problem (INLP). To find 
a face, we only need to find a local maximum filter 
response which value is above a threshold. Let T 
represent an input image, SW represent a subwindow 
and dv be its detection value (the corresponding output 
of the neural network). With these notations the FS 
problem can be stated as: 

arg max ( )      dv ∀ ∈SW SW SW T                          (1) 
If ( )dv SW  is higher than a given threshold, the 
corresponding portion of SW is declared as a face. 
 
4. Particle swarm optimization 
 

Particle swarm optimization (PSO) is a novel 
evolutionary computation method, modeled after the 
social behavior of flocks of birds [8]. PSO is a 
population based search process where individuals, 
referred to as particles, are grouped into a swarm. Each 
particle in the swarm represents a candidate solution to 
the optimization problem at hand. The performance of 
particles is measured using a predefined fitness function 
which encapsulates the characteristics of the 
optimization problem. 

Each particle i maintains the following information: 
Xi, the current position of the particle; Vi, the current 
velocity of the particle; pbesti, the personal best position 
discovered by the particle so far, and also the best 
position found by the entire swarm so far, denoted by 
gbest. All particles start with randomly initialized 
velocities and positions. At iteration step t, the current 
velocity and position (searching point in the solution 
space) are updated by: 
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where w is the inertia weight, c1 and c2 are the 
acceleration constants, r1(t) and r2(t) ~ U(0, 1). The 
velocity of a particle will be set to a predetermined 
maximum velocity (Vmax) if it exceeds Vmax. 

The features of the algorithm can be summarized as 
follows: 

(a) PSO searches the solution space using a group of 
searching points like genetic algorithm (GA) and the 
searching points gradually get close to the optimal point 
using their pbests and the gbest.  

(b) As explained in Ref. [9], the first term of the right 
side of Equ. (2) is corresponding to the exploration of 
the search space. The second and third terms of that are 
corresponding to the exploitation of the best solutions 
found so far. Namely, the method has a flexible and 
well-balanced mechanism to utilize exploration and 
exploitation in the search procedure. 

(c) The original PSO was originally developed for 
nonlinear optimization problems with continuous 
variables. However, the method can be expanded to 
discrete problems easily [10]. 

(d) Because the update process of PSO is based on 
simple equations, the algorithm is easy to implement and 
computing economically. In addition, only a few input 
parameters need to be adjusted in PSO which makes it 
easy-adjusted to get better performance. 

Due to the above features, PSO is expected to be 
suitable for the FS problem formulated as an INLP. 
 
5. Face search using PSO 
 

The main steps of the proposed method are shown in 
Figure 2. In the following, we will describe the approach 
in detail.  

5.1 Encoding and rescaling 

In our problem, each particle represents a subwindow 
in the input image. We use its center (Cx, Cy) and length 
S to encode a subwindow. To evaluate subwindows of 
different sizes using the neural network, we should 
rescale them to the size of 20×20 (the input size of the 
neural network). However, if this computation is done on 
every size of subwindows, it will be very time-
consuming. To avoid it, we first build an image 
pyramid†: 

Fig. 1  left: an input image; right: 3D view of the neural 
network output, obtained by superposing the outputs of 
subwindows at all scales. 
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Fig. 2  Main steps of the proposed method 
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where W and H are the width and height of the input 
image respectively, and q is the scale factor. The top 
level (level L) should have a size more than 20×20: 
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Then we let S to be chosen among the following 
geometric sequence†:  
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So each particle X is constructed as ( , , )T
x yC C k=X . 

Cx, Cy and k are defined in [10, W-10], [10, H-10] and [0, 
L] respectively. 

5.2 Preprocessing    

Before a 20×20 window is passed to the trained 
neural network, it is preprocessed with lighting 
correction (by subtracting a best fit linear function) and 
histogram equalization as in Ref. [2],[3]. The former 
reduces the effect of different lighting conditions and the 
latter improves contrast across the window. 

5.3 Fitness evaluation    

To evaluate each particle (subwindow), we directly 
use its detection value (the corresponding output of the 
neural filter): the larger its detection value (dv), the more 
the subwindow resembles a face. The fitness function 

( )f SW  is given as 
( ) ( )    f dv= ∈SW SW SW T                                (8) 

where T is the input image and SW is a subwindow, 
( ) [ 1,  1]dv ∈ −SW . 
The corresponding subwindow of a particle may go 

beyond the image’s boundary even if all its variables lie 
in the search boundary. To guarantee feasibility of 
solutions, a random repair method (RRM) is investigated 
in this paper. If a particle is checked to be infeasible, it 
will be forced to “fly” to a new position, which is 
randomly generated but feasible. The method works as 
follows: 

If ∉SW T , then 
Step 1: Randomly generate a new position ′SW . 
Step 2: If ′∈SW T , replace SW  with ′SW ; 

otherwise, go to step 1. 

The proposed RRM has proven more efficient for our 
problem than the traditional penalty approach [11]. 

5.4 Particle flying    

Based on their fitness, particles in the swarm are 
guided by Equ. (2) and (3) to fly to possible face regions 
in the image. New (Cx, Cy, k) generated by Equ. (2) and 
(3) are real values. When corresponding to a subwindow 
in the input image, they are transformed into integers by 
using the floor function. During flying, if a variable 
extends the defined search boundary, it will be set to the 
closest limit, i.e. 
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                                     (9) 

where xjmin and xjmax are respectively the lower and upper 
search limit of variable xj, jx ∈X . 

5.5 Stop criterion    

The algorithm is stopped when 1) a “face” is found – 
the detection value of the best particle is above the given 
threshold or 2) the maximum iteration number is reached. 
 
6. Experiments 
 

A number of experiments were performed to evaluate 
the proposed method. The experiments were performed 
on 42 images with complex backgrounds. Some of the 
images were chosen from CMU Test Set [12] and other 
Internet resources; the others were taken by us in an 
indoor environment using a CCD camera. Each image 
contains only one face and all the faces can be detected 
by the neural filter. All the images have the same size of 
320×240 and the face size ranges from 34×34 to 
178×178. The threshold of the neural network output 
was set to 0.1. 

According to pre-simulation, the parameters of PSO 
were set as: 

c1, c2: 0.2, 
w: 1.2, 
Vmax: 0.2×(Xmax-Xmin), 
Swarm size P: 60, 
Maximum iteration number MaxIt is set to 70. But 

one restart is allowed, i.e., if the algorithm fails to find a 
face within MaxIt it will be re-initialized and perform a 
new search. 

For each image in the test set, we ran our algorithm 
100 times. The total detection results are listed in Table 
1. Some examples are shown in Figure 3. The time 
consuming was reported on an AMD Athlon 750 MHz 
PC with Windows 2000 as its OS. 

As shown in Table 1, the proposed search method 
yielded a high success rate (93.6%) on average (the best 
is 100% and the worst is 72%). Moreover, about 39% of 
the failures are because PSO fell into a false detection, 
the other failures are due to non-convergence. A further 
reduction of false detections can be achieved by 
arbitrating among multiple networks [3]. From the † Each term in Equ. (4) and (6) is transformed from a real value to an 

integer value by using the floor function. 



examples shown in Figure 3, we can see that the 
proposed method maintains robustness in images which 
contain faces under a very wide range of conditions 
including scale, pose, position, complex backgrounds, 
illumination conditions, etc.  

Table 2 gives the comparison of the proposed search 
method (called swarm search) with the exhaustive 
search method. It’s clear that the time consuming and the 
number of subwindow evaluations of the proposed 
method are much less than those of the exhaustive search. 
Although with a little loss of detection rate (due to non-
convergence), a great speedup has been achieved by 
using the swarm search compared to using the 
exhaustive search.  

The method proposed by Viola and Jones [13] is 
about 2.7 times faster than ours even performing an 
exhaustive search. The reason is that they use a 
computationally extremely efficient face filter, which is 
made of a boosted cascade of classifiers built with the 
AdaBoost algorithm. However, it is possible to combine 
our swarm search method with their face filter to make a 
more powerful face detection system. 
 
7. Conclusion 
 

This paper presents a new search method for NN-
based face detection. The proposed method formulates 
the problem of face search into an integer nonlinear 
optimization problem (INLP) and expands the basic PSO 

to solve it. The feasibility of the proposed method is 
demonstrated on a set of 42 images with promising 
results. With fine-adjusted parameters, PSO only 
requires less than 2000 evaluations of subwindows for 
finding the face in an image. The result is much more 
effective and superior over the classical exhaustive 
search method. Many object detection problems can be 
formulated as an INLP and the results indicate the 
possibility of PSO as a practical tool for various INLPs 
of object detection. 

However, we have found that the method doesn’t 
work well on some images, especially when the face size 
is very small. How to improve the robustness is the 
future work.  
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Table 2:  Swarm search vs. exhaustive search 

 Swarm search Exhaustive search* Ratio 
ANSEs 1965 193737/2 1 : 49
APT (ms) 250 20169/2 1 : 40

* Because we only consider the single-face detection 
problem in this paper, for fair comparison, we suppose 
that it takes only half of an exhaustive search to find a 
face. 

Table 1:  Experimental results 

Success False Non-convergence ANSEs APT (ms)
93.6% 2.52% 3.88% 1965 250 

False: false detection rate; ANSEs: Average Number of 
Subwindow Evaluations; APT: Average Processing 
Time. 
 

Fig. 3  Examples from the test set 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


