
Autonomous evolutionary machine vision systems. 
 

Jeffrey Johnson and Valerie Rose 
Department of Design and Innovation 

The Open University 
Milton Keynes, MK7 6AA, England 

j.h.johnson@open.ac.uk and vrose@ukonline.co.uk
 
 
Abstract 
 
We propose a radical new approach to machine 
vision based on biological principles in the 
context of a multilevel architecture of 
representation and reconstruction. 
 
1. Introduction 
 
Machine vision is a notorious bottleneck in 
robotics and automated systems. We seek a 
method of creating very flexible machine 
vision systems that can evolve in particular 
environments to recognise anything that an 
operator has indicated as being ‘interesting’ in 
that environment. For example, Figure 1 shows 
an object that a house-tidying robot might 
encounter during its everyday duties.  
 

   
 
Figure 1.Contouring an object 
 
Our intention is that non-programmers can 
train our vision systems by ‘pointing’ at an 
object in a scene, e.g. drawing a contour round 
it, with the system to evolving the ability to 
recognise such objects automatically. Our 
approach is based on new combinatorial 
structures supporting an architecture that 
allows vision systems to generalise and adapt 
to recognise new classes of objects. This 
architecture is based on new combinatorial 
mathematics in the science of complex  
systems [1]. 

 
There are many approaches to machine vision, 
including algorithmic knowledge-based 
programming, neural systems that learn from 
examples, and combinations of both. Many 
practical systems are based on algorithms or 
procedures making opportunistic use of special 
features of particular objects and scenes. 
Although this may give acceptable 
performance for a given application, there is 
usually a poor ability to generalise to other 
similar scenes, and no ability to generalise to 
different environments. A system designed to 
inspect industrial parts is unlikely to be 
incorporated in a mobile planetary robot. 
 
It is common for human programmers to 
design vision systems so that data are 
optimised for the particular problem and 
classification technique being used. The 
generality is that machine vision systems are 
hand-crafted to give the best results for a 
particular application, but are brittle and 
perform poorly outside their narrow 
specification, and lack any ability to adapt. 
 
We seek machine vision systems that can: 
 

• use point-and-learn training 
• work for cluttered scenes 
• adapt to changes in objects and scenes 
• adapt to any scene or environment 

 
To achieve this we propose a multilevel 
architecture in which machine vision systems 
 

• evolve appropriate retinal 
configurations 

• evolve connectivities to represent 
spatial relationships 

• abstract their own higher level 
constructs 

• levels are integrated by new relational 
mathematics 

 
The key feature of the architecture is the 
ability of the system to abstract its own 
constructs from data in a multilevel algebraic 
representation. This allows the system to learn 
objects that may change through time, and to 
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adapt to learn radically new objects and scenes 
without the need to change the underlying 
program. These requirements are very 
demanding and beyond any existing machine 
vision systems. 
 
2. The Fundamental Structures 
 
 
  
  
  
  
  
  
    
Figure 2. An image of an arch. 
 
The fundamental idea behind our architecture 
is that of n-ary relations. To illustrate this 
consider the image of an arch in Figure 1. As 
we view it, we see two pillars supporting a 
crosspiece. The crosspiece, for example, is 
made up of the pixels marked a, b, c, d, e, f, g, 
h, i, j, k, l, m, n, o, and p. These sixteen pixels 
are assembled by a 16-ary relation, RRB, into a 
rectangular block.  
 
The construct ‘rectangular block’ defines a set 
of objects which will be written RB = {x | x is 
a rectangular block}. In order to be 
operational, this requires a pattern recogniser, 
PRB, which is able to say of any candidate for 
membership, x, that x is a rectangular block, P-
RB(x) = True, or that x is not a rectangular 
block, PRB(x) = False. 
 
Generally pattern recognisers need to refer to a 
set of features of the object. In this case there 
are sixteen features, {x1, x2, …, x16}, the pixels 
used to make up the block. Each of these xi 
needs to be of the right type, so the overall 
pattern recogniser requires a set of sub-pattern 
recognisers, PRB,i, with the requirement that 
PRB,i(xi) = True. 
 
Now it can be seen that the pattern recognition 
involves two types of decision: 
 
(i) for each xi, it is necessary that xi is of the 
right type, here a dark pixel. PRB,i (xi) = True. 
(ii) given that all the xi are pixels, it is 
necessary to established that they are 
assembled properly so that the relational 
structure holds with PRB(x1, x2, …, x16) = True. 
 
Clearly (i) comes before (ii). There is no point 
applying expensive pattern recognition 
procedures to objects which are of the wrong 
type to form the pattern. However, there is 

danger of an infinitive regress: To test RRB it is 
necessary to test RRB,i for each xi. But to test 
RRB,i it is necessary to reduce xi to its parts, 
and test them. And so on. Where can it all end? 
In robotics and machine vision the answer to 
this question is easy. Top-down reductionism 
ends when the pattern recognisers are 
grounded in sensor data. In other words the 
sensors ‘ground’ everything the machine can 
know about its environment (Figure 3). 

a b c d e f g h 
i j k l m n o p cross-piece 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Reductionist grounding prevents 
infinite regress in pattern recognition 
 
When PRB(x1, x2, …, x16) = True for a particular 
set of features, {a, b, c, …}, we give the 
resulting object a name, here C, and write 
σ(C)= 〈 a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p; 
RRB〉. σ(C) is called a simplex and the elements 
〈a〉, 〈b〉, 〈c〉, etc are called its vertices. The parts 
or features of an object can be said to lie at a 
lower level in its representation than the object 
itself. If the parts are drawn within an Euler 
circle (ellipse), the name of the object can be 
drawn as the apex of a hierarchical cone, as 
illustrated in Figure 4. 
 
 
 
 
 
 
 
 
 
 
Figure 4. A hierarchical cone. 
 
The relation RRB and all its reductionist sub-
relations will be called a construct. Clearly, in 
order for a construct to be operational, it must 
be grounded. Generally constructs are named, 
and they define sets of named objects. E.g., we 
can use the name ‘rectangular blocks’, and 
write rectangular blocks = { x | x is a 
rectangular block }, which is an intensional 
definition. Alternatively we can write 
Rectangular Blocks = {RB1, RB2, …, RBn}, 

PRBi(xi) = True ? a b c d e f g h 
i j k l m n o p 

PRB(x1, x2, …, x16) = True ? 
pillar 

PRBi is 
grounded 

sensor 

a b c d e f g h 
i j k l m n o p 

C 

RRB  



where each of RBi is the name of a particular 
rectangular block. 
Figure 5 shows the two stages of assembly of 
the arch; which is defined as structured set of 
blocks. The blocks are defined as structured 
sets of pixels; and the pixels are grounded in 
reality through the camera sensor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Multilevel construct aggregation 
 
The pillars named as A and B in the image are 
also structured sets of pixels, as shown in 
Figure 5. The intermediate constructs A, B and 
C can be assembled by a 3-ary relation, Rarch to 
form the construct called an ARCH. Thus we 
have σ(ARCH) = 〈 A, B, C; Rarch 〉. In this way 
we build primitive structures from atomic 
constructs (pixels), we build intermediate 
constructs from these at a higher level in the 
multilevel representation, and so on, until we 
recognise objects within scenes at the highest 
level. At every level we use named constructs 
to reference the objects abstracted. 
 
This example illustrates a major problem in 
machine vision. The notions of ‘pillars’ and 
‘crosspieces’ are social constructs inside 
programmers’ heads. Vision systems are 
highly dependent on programmers’ ways of 
construing the visual universe. It is well known 
that this can be very different between 
different people [2], and there is no guarantee 
that a given programmer will choose the most 
appropriate constructs. Much better to have the 
vision system abstract these constructs for 
itself. 
 
3. Low level pixel configurations 
 
In the proposed multilevel architecture, let the 
pixels define a base level, Level 1. (Lower 
level sub-pixel constructs are possible, (e.g. 
Johnson and Picton, 1985), but not discussed 

here. At this level of representation are the 
usual greyscale histograms.  
The next level of representation must be 
characterised by sets of pixels structured by 
relations – nothing else is possible! So, Level 2 
in the representation will consist of sets of 
pixels under n-ary relations. To illustrate this, 
consider the pixel configurations shown in 
Figure 6. To establish them at the lowest level 
in the representation, these will be called 
retinal constructs. 

Level 3 –  object 

 
In Figure 6(a) there is a central sensor, such as 
light-sensitive rod, responding to relative 
darkness, surrounded by six other sensors, 
numbered 0, 1, 2, 3, 4 and 5. There are 26 = 64 
configurations of light-.dark for these six 
satellite sensors. The configurations have been 
designed to have a topology corresponding 
more closely to packed cells than the usual 
Cartesian grid. Also they are designed using 
the ‘next but one’ neighbours according to 
Simon’s three pixel principle [3][4]. 
 
 
 
 
 
 
 (a)  hexagonal array of pixel sensors 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) the 64 retinal configurations 
 
Figure 6. Hexagonal pixel constructs 
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These configurations are examples of masks or 
filters which are widely used in machine 
vision. As such they have been designed by the 
programmer (me!) and have the problem of 
subjective selectivity. Although I find these 
configurations attractive for a number of 
reasons, how can I be sure that they are the 
most appropriate for any particular objects in 
any particular environment?  
 

        
 
(a) circle and diamonds    (b) line segments 
 
Figure 7. Examples object classes 
 
The sixty four retinal configurations in Figure 
6 were used to analyse eighty hand-drawn 
shapes, forty ‘circles’ and forty ‘diamonds’, 
similar to those shown in Figure 7. Each dark 
pixel in the shapes was analysed by inspecting 
its surrounding pixels and assigning to it one 
of the sixty four retinal configurations. As a 
first level of analysis, the numbers of each 
configuration were counted, giving a 64-
element vector for each configuration. The 
vectors of the configurations with non-zero 
frequencies are given in Table 1. 
 
4. Single Level Neural Classification 
 
Inspection of Table 1suggests that the 
frequency vectors alone are sufficient for 
classification of the simple circle and diamond 
shapes, and indeed they are. For example, 
configurations 14 and 31 have much higher  
 

frequency for the circles than the diamonds, 
reflecting their natural response to vertical left 
and right edges respectively. Similarly, 
configurations 7, 30, 51 and 57 favour the 
diamond shape by responding well to oblique 
edges. 
 
In principle, a conventional multilayer 
perceptron neural network will classify such 
data well, assuming convergence. Note that in 
Table 1, twenty nine of the sixty four possible 
configurations respond to the eighty shapes, 
leaving thirty five retinal configurations that 
do not respond to these shapes. Training the 
network with all sixty four configurations as 
inputs increases the computation and the 
possibility of non-convergence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

diamond 

circle 

Figure 5. A single level vector neural  
classifier 
 
Table 2 gives the configuration counts for the 
line segments shown in Figure 4(b). The 
response of these objects to the retinal 
configurations is completely different to that 
for the shapes. These response vectors can also 
be used for robust classification between the 
steep and shallow line segments. It is 
encouraging that a single layer neural classifier 
can discriminate these line segments, since it is 
believed that animal vision uses such 
primitives.  
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

diamond 
  3  4  6  7 12 14 15 24 28 30 31 32 33 35 39 46 47 48 49 51 53 55 56 57 59 60 61 62   63 
  2  1  1 22  1  1 21  2 25 24  0  1  2 21  0  1 21  1  2 25  1 21 18 24  2  0 17 24  978 
  2  1  1 25  1  2 21  1 14 26  1  0  1 18  1  1 24  1  2 18  0 17 25 27  0  2 23 12  885 
  1  0  1 27  2  4 23  0 27 17  3  0  0 25  2  0 25  2  2 28  0 22 28 19  0  4 26 25 1256 
  2  0  0 30  1  3 17  2 26 29  0  0  0 22  5  0 28  1  3 28  0 20 21 31  0  3 20 25 1292 
circle 
  3  4  6  7 12 14 15 24 28 30 31 32 33 35 39 46 47 48 49 51 53 55 56 57 59 60 61 62   63 
  0  0  2 14  0  8 20  0 25 19  6  0  1 11 31  0 12  0 22 17  0  8 10 14 19 21  6 21 1322 
  0  0  0 18  2 18 10  0  6 18 16  0  0  8 33  0 14  2 16 18  0  4 17 13 14 32 15  4 1253 
  0  0  2 13  1 11 37  0 10 12 10  0  0 12 28  0 11  1 14 16  0  8 27 15 11 23 24  7 1375 
  0  0  1 18  1 14 10  2 14 18 12  0  1  8 23  0 15  1 22 14  0  5 10 12 20 19  9 13 1083 
 
Table 1.    Frequencies of retinal configurations in the shapes of Figure 4. 



However, these classifier soon break down 
when the number of objects to be classified 
gets large, as is required for recognising a 
comprehensive set of line segments. 
 
steep lines 
  0 1  4 5  8  9 32 36 40   
  9 0 13 2  0  0 13 21  2   
  3 0 11 1  1  0 12 27  0 
  8 1 17 1  0  0 16 15  2 
 
 
 7 0 11 0  0  0 11 28  0 

shallow lines 
  0  1 4 5  8  9 32 36 40   
 21  7 5 1  7  4  5  1  1 
 32  4 0 0  4  5  0  0  0 
 30 10 1 1 10 18  1  0  1 
 28 11 1 3 13 10  3  0  1 
 
Table 2. Line segments frequencies ( Fig 4) 
 
The approach to pattern recognition illustrated 
here map the object to a vector of numbers 
counting the frequency of ‘interesting’ features 
of the objects, interprets the vector as a point 
in multidimensional space, and classifies the 
points according to some notion of ‘similarity’. 
In terms of our objects it begs two questions: 
 

1. where do the ‘interesting’ features 
come from? 

2. is a single level of processing 
adequate to discriminate objects in 
complex scenes? 

 
In answer to first question, in our illustrative 
application, the ‘interesting’ features were 
designed in by the programmer. Delegating the 
selection of ‘interesting’ features to a 
programmer inevitably means that the system 
will be limited in its ability to recognise 
objects, and unable to adapt to recognise 
objects that are very different from the design 
specification. 
 

 
 
Figure 9. Shapes with equivalent vertical 
and horizontal lengths 
 
It is easy to show that this kind of single level 
of classification is inadequate in general for 
object recognition in vision. For example, the 
objects in Figure 9 all have the same length of 
vertical and horizontal edges. Conceivably the 
corners would have different retinal 
configurations, but the numbers would be 
small, and robust discrimination between the 
objects by a single vector of retinal 
configurations is unlikely. 

The answer to the second question must be that 
a single level of classification is not adequate. 
If it were, objects and scenes could be 
presented to a network as an input vector, to 
deliver recognition of classified objects. Even 
if this were possible in theory, it would be 
impractical because combinatorial explosion 
mean that the necessary input vectors would 
have astronomic numbers of elements. 
 
5. Interpreting the data as constructs 
 
In the previous section it has been seen how 
some retinal configurations can be associated 
with constructs such as ‘oblique’, ‘vertical’, 
‘left and ‘right’ edges. These are human 
constructs that can be imposed on the data. 
The machine, of course, does not share these 
constructs explicitly in its representation. Thus 
there is a co-relation between our concept of a 
‘round edge’ and, say, the pixel configuration 
49, , taking a relatively high value for 
circular objects. 
 
Put like this is becomes possible to understand 
why conventional approaches to machine 
vision have failed so comprehensively. As 
programmers we seek appropriate descriptors 
or constructs to represents objects to be 
recognised. We look at an object, and abstract 
properties such as ‘roundness’ and 
‘straightness’, that our language conveniently 
has terms to describe. We then seek machine-
based abstractions that match these linguistic 
constructs.  
 
But as animals we constantly recognise objects 
for which there is no explicit name. For 
example, most readers will recognise the shape 

 as being one of those in Figure 9, even 
though this shape has no explicit common 
name. Since I want to talk about it I will give 
the name of ‘double-square shape’. Then I can 
say things like ‘the double square shape is 
between the cross and the square in Figure 9, 
and even begin to reason about double-square 
shapes. However, if such a shape were to be 
recognised within a machine, it can simply be 
named implicitly by the data structures, 
possibly, its position in memory. 
 
Freeing ourselves from serendipity 
abstractions in a particular programmer’s head, 
and designing machines to form their own 
constructs is here seen as the way forward. To 
some extent this is what multilayer neural 
networks do, and some researchers assert that 
each neuron is processing a construct. 
However, that approach is relatively blunt, 
since the constructs are always implicit. 



 
5. Multi-Level Pattern Recognition 
 
Figure 10 shows one of the diamond shapes  of 
Figure 7 with its numbered retinal pixel 
responses letter-coded as follows:  A (7), B 
(14), C (15),  D(24), E (25), F (30), G (35), 
H(47), I (49), J (51), K (53), L (55), M(56), N 
(57), O (61), P (62), dot (63), and X (all 
others). Note that on the bottom edge the 
sequence ACH (    ) recurs along the 
bottom left edge. This can be written as a 
simplex, 〈 A, C, H; R horizontal 〉, in the terms of 
Section 2. This can be considered to be a 
configuration of retinal configurations, and 
exists at a higher level of aggregation. 
 
 

 
 
Figure 10. 〈 A, C, H; R horizontal 〉 as an 
emergent construct 
 
 
The ACH configuration emerges from the 
diamond shape, Let it be denoted σABC. Then 
pairs of such configurations can form the 
structure 〈 σACH,i , σACH,j ; R above_left 〉, at yet 
another level of aggregation. Let this structure 
be denoted by the symbol σACH,. Then these 
too can be aggregated to form a structure that 
eventually aggregate into structures involving 
all seven of the ACH sequences. From a 
human perspective this could be called a 
straight edge. From a machine perspective this 
is a learned or evolved structure, physically 
embedded in the machine that has emerged 
because there is advantage in it doing so. 
 
 
 

 

  
 
 Level N  high level constructs

 
 
 
 
 

Level 3  intermediate constructs 

 
 
 
 
 
 
 
 
(a) Iterated assembly up the representation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) iterated assembly through cones 
 
Figure 11. Multi-level aggregation 
 
 
6. Spatial Relationships 
 
The configurations in machine vision 
inherently involve spatial relationships. 
Conventional approaches to machine vision 
often take a highly geometric approach to 
spatial relationships, based on the Cartesian 
geometry of the pixel grid. It is interesting to 
consider whether Cartesian geometry is a 
product of the human mind, or part of the 
fundamentals of its workings. 
 
From our perspective it is much easier, in 
principle, to represent multilevel spatial 
structure through multilevel tessellations and 
connections between levels. In other words, we 
propose to proceed on the basis of spatial 
relationships being hard-wired into the 
substrate of the vision system. This idea is 
illustrated in Figure 12, where four objects 
have been recognised, and the spatial 

Level 2  intermediate constructs 

Level 1  retinal configurations 

diamond 

A C H 
A C H 
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 L  L G G 

 L  L G G 
 L  L G G 

    



relationship between them is established (and 
computed) by located connections between the 
site of response and higher level processing 
that recognises the object. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure12. Hard-wired spatial relationships 
 
7. Segmentation 
 
One of the most difficult tasks in machine 
vision is to segment a complex scene into 
‘relevant’ parts. Generally one seeks areas that 
contain discrete objects, such as the coffee 
mug shown in Figure 10. In Figure 10(a) we 
show a training object identified by a user. 
This low-skilled method of teaching the 
system is the only kind of input the trainer 
gives. Following this, the system has to find 
discrete objects in the image to be recognised 
as of the same type as the training items. 
 
Figure 10(b) illustrates the many problems 
involved in segmenting images. The mug has 
no well defined contour, since neither it nor 
the background are homogeneous in greyscale. 
In some places the mug merges into the dark 
background, while in other places it is a 
relatively light grey due to the reflected light.  
 
 

     
 
(a) user defined object   (b) how to segment? 
 
Figure 10. The segmentation problem 
 
The white ellipse is a strong signal to humans 
that this is a cylindrical object, but the machine 

knows nothing of this a priori. In many places 
the mug has highlights, making it visually very 
variable. In the first instance we do not assume 
that that our system will have top-down 
context knowledge such as ‘if the scene 
contains an ellipse, then it contains a cylinder’. diamond 
 
Although the examples in this paper have been 
pre-segmented binary images, the methods 
developed here are highly applicable to 
greyscale and coloured images. The relational 
method can be very powerful when, for 
example, the satellite pixels are compared to 
the centre and classified as light/darker. This 
approach can lead to areas with varying 
greyscales but homogeneous greyscale 
gradient. This approach has been successfully 
applied in scientific measurement systems. The 
details are beyond the scope of this paper, but 
further details can be found in [3][4].  
 
8. The architecture 
 
The research described in this paper, in the 
context of our objectives leads us to the 
following principles: 
 
Principle 1. Low retinal configurations will 
aggregate to form higher level constructs 
 
Principle 2. The constructs will depend on 
spatial relations 
 
Principle 3. The retinal configurations should 
not be constrained by design, but should be 
allowed to emerge from the images and scenes 
in its environment 
 
Principle 4. The spatial relations in the system 
should be implicit in its topology so that 
Cartesian geometry need not be used 
 
Principle 5. Higher level spatial configurations 
should not be constrained by design, but 
should be allowed to emerge from the images 
and scenes in its environment 
 
Principles 1 and 2 are the fundamental 
theoretical underpinning of our approach. They 
are supported by algebraic mathematics that 
can be implemented as data structures in real 
computers. 
 
Principle 3 is based on the need for the system 
to adapt to new things. Any system with pre-
designed primitives is constrained by what the 
designer puts in. This spans the space of 
possibilities. Any object not in that space 
cannot be recognised. This is one reason why 



conventional machine vision collapses outside 
its design domain. 
  
If the low level configurations are not to be 
designed in, where can they come from? We 
have experimented with forming low level 
constructs by random configurations of pixels. 
We have found that generating random masks 
gives some discrimination between the circular 
and diamond shapes discussed earlier. 
However, there remain many open questions, 
including the optimum diameter for a retinal 
configuration. 
 
A similar argument suggests there can be no 
fixed multilevel architecture, and this too must 
incorporate random processes. Thus the 
‘relevant’ configurations of configurations, 
and the resulting ‘construct’ have to be 
discovered by the machine. 
 
Thus there are two parts to our architecture. 
The simplest involves the machine learning 
particular objects and scenes within a given 
hardware topology. In other words, in the 
simplest case the machine is fixed, and 
recognition takes place by values and 
parameters changing within that structure. 
 
The more demanding part of the architecture 
involves evolutionary principles to generate 
and select ‘appropriate’ retinal primitives, and 
to generate and select appropriate topologies to 
support relational structure throughout the 
multilayer aggregation. This lies at the heart of 
our research programme to achieve 
autonomous evolutionary machine vision 
systems. 
 
9. Discussion and conclusions 
 
In this paper we have illustrated some of the 
basic ideas of our research programme, and 
reported briefly some preliminary experiments 
on evolving retinal configurations. Those 
experiments combined with the experiments 
reported on designed retinal configurations 
suggest that this part of the research will be 
relatively straight forward. In other words, the 
research on the evolution of retinal 
configurations has already begun and we are 
beginning to understand this part of the 
challenge relatively well. 
 
By far the greatest challenge is in 
implementing the multilayer architecture to 
support the hierarchical assembly of 
information towards object and scene 
recognition. One major unresolved challenge 
in this is to design spatial structure into the 

system in a way that overcomes combinatorial 
explosion. The human brain has some ten 
billion neurons with five to ten thousand 
connections per neuron. This apparently huge 
amount of processing power and information 
distribution ability appears more modest when 
compared to the numbers of ways that retinal 
configurations can be defined and connected in 
a multilevel architecture. Furthermore, we 
expect to implement our architecture on 
standard computers with orders of magnitude 
less memory and orders of magnitude less 
computational ability than biological vision 
systems. 
 
Currently our idea is that spatial structure is 
determined by the initial connections to the 
retinal configurations, where the image is 
grounded, and subsequent connections are 
through the multilayer system. There is a 
major challenge in establishing a theoretical 
architecture that can be implemented in 
practice, followed by the major practical 
challenge of inducing the system to self-
organise as it adapts to new visual 
environments. 
 
We are aware of the difficulty of the research 
we propose. We are optimistic that success is 
possible because the combinatorial 
mathematics underlying our research contains 
some of the essential structures necessary to 
achieve our objectives. 
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