Learning Control of Manipulator with a Free Joint
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Abstract

In this paper, reinforcement learning approach to
motion control of 2-link planer underactuated manip-
ulator is described. This manipulator has one passive
joint and is difficult to control. The experiments of
learning to control this manipulator by RL and hu-
man are executed. Using the experimental results, the
associations between RL and human learning are con-
sidered.

1 introduction

Reinforcement learning (RL) is a general frame-
work for describing learning problems in which an au-
tonomous agent learns strategies for interacting with
its environment[1]. RL has been applied to many re-
search areas. Motion learning is one of such areas.
For the robot, in order to adapt to a dynamic envi-
ronment, motion learning is one of key issues. There-
fore, many algorithms for motion learning have been
intensively discussed for years[2]. Many control ob-
jects are tested in acrobot, inverted pendulum, walk-
ing robot etc., and most of these tasks are nonlin-
ear. They have some equilibrium points which can
be stabilized by continuous feedback control. In these
cases, by using the information of these equilibrium
points as prior knowledge, more distinguished motion
learning algorithms can be designed, e.g. a hierarchi-
cal RL algorithm composed of linear controllers and
an adequate reward function[2]. However, there are
several typical nonlinear systems which are not able
to apply such hierarchical algorithms. 2-link planer
under-actuated manipulator (2PUAM) is one of those
systems. This system has been widely studied by con-
trol engineers[3]. But only a few researches have been
done from view point of learning. On design of RL
algorithm for 2PUAM, setting of the reward is diffi-
cult, and in addition, the state space is multidimen-
sional and continuous. Therefore, the approximation
of value function is needed to solve the local optimal
problem.
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On the other hand, some researchers have applied
the cognitive and learning capability of human to com-
plex control systems. Even though, a human operator
fails to control complex system in the beginning, but
after enough training, he, she can find a way to con-
trol it satisfactory. It is apparent that he, she does
not use a mathematical model. This fact shows that
human can find a satisfactory control law by a trial-
and-error without the knowledge of the mathematical
model to control object. For example, it is reported
that the joint angle control of 2PUAM can be achieved
by human operator[4]. This indicates the capability of
learning the behavior which can not be achieved by
using continuous feedback.

In order to solve such difficult control object, real-
ization of RL algorithm reproducing human abilities
is desirable. Therefore, the investigation of human
learning mechanism from the perspective of RL is ba-
sically necessary. In this paper, a 2PUAM is selected
as the learning problem. And learning experiments by
RL and human are tested. In the RL experiment, Q-
learning is implemented. For the experiment of human
manual control, a 2PUAM simulator is developed. It
includes a policy evaluation module. This module au-
tomatically approximates the Q-value function accord-
ing to the action series of human. By using these ex-
perimental results, the comparison between RL agent
and human learning is described.

2 Model of manipulator

In this paper, a 2PUAM is used for the learning
task. It has only one active joint and one passive joint,
and neither gravity nor friction torque acts on it. It
is one of the simplest forms of underactuated manip-
ulators. The equation of motion of the manipulator
is:

M11(9)9“1 + M12(9)9"2 +c1 (6, 9) =T, (1)
Mo (0)61 + Mas(6)6s + (6, 0) = 0, (2)



where 61 and 6, are angle of each joint, M is iner-
tia matrix, ¢ denotes centrifugal term, and right sides
of boss Eq. (1), (2) are the input torque. Therefore
Eq. (2) means the dynamic constraint caused by the
zero torque at the passive joint. This manipulator has
two main characteristics. The first is that the inertia
matrix includes the passive joint angle 65 as usual[3],
then, Eq. (2) is nonintegrable. It is called second-
order nonhoronomic constraint. The second principal
characteristic is that this manipulator is not bound by
gravity or friction, i.e., arbitrary angle become equilib-
rium points. However, it is not controllable by a con-
tinuous feedback. To stabilize an equilibrium point,
this manipulator must be controlled by discontinuous
or time variant feedback control.
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Figure 1: Environment of Learning.

2.1 Environment of Learning

In learning the task of 2PUAM called " manipulator
task”, the actuator installed in active joint is regarded
as an agent. As shown in Fig. 1, by selecting an input
torque, 7 € (—0.1,0,0.1) the RL agent or the subjects
must drive the end effector to the goal area and bring
to halt or keep between +1(degree/s) angular veloc-
ity. Because of the 2PUAM’s mechanism, it would be
two objective positions, the upper position p; and the
lower ps.

3 Reinforcement Learning

At each time step (€ 0, 1,2,...), the agent observes
its environmental state, s; € S and selects an action,
a; € A(st). As a consequence of the action, the agent
receives a scalar reinforcement signal, referred reward,
r¢ € R. One time step later, the agent observes a new
state, s;y1.The aim of the agent is to maximize the
expected discounted reward E{}_,2,~'r:}, where v is
the discount factor. In this paper, Sarsa(\)[5] is em-
ployed to learn estimates of optimal Q-value functions
that map state-action pairs (s, a) to optimal return on
the action taken in the current state.

3.1 Function Approximation

In motion learning such as manipulator, continuous
state variables are dealt with. Thus, tile coding is
employed[1] here. In tile coding, the receptive fields
of the features are grouped into exhaustive partitions
of input space. Each partition is called a tiling, and
each element of the partition is called a tile. When the
agent observes its environmental state s, and selects
an action a, the Q-value function is calculated as

Q(s,a) = Z (4, )5 (j) (3)

where i(i = 1,2,...,m) is the number of tiling, j(j =
1,2,...,n) is the number of tile. ¢ is the parameter
vector of each tiling and ¢ is binary feature vector.
If the state is inside the tile of each tiling, the corre-
sponding feature has the value 1, otherwise the feature
is 0.

3.2 Sarsa())
In Sarsa(\), on experiencing transition

< s,a,r,s',a’ >, the following updates are per-
formed in order:

mta) = { 7 e @)
d=r+ VQ(Slv al) - Q(57 a) (5)
for all 4 and j
Qi(j,@) — qi(j,c’t)—l—aém(j,&), (6)
i (.7’ @) — ’7>\77i (.7’ @)7 (7)

where a(0 < a < 1) is the learning rate, y(0 <y < 1)
is the discount factor, 7 is the replacing eligibility trace
function, and A(0 < A < 1) eligibility factor.

During learning, at time step ¢, the agent will select
an action according to some strategies. In the exper-
iments of this paper, Max-Boltzmann distribution[6]
rule is employd. In Max-Boltzmann distribution, an
action with maximal Q value is chosen with probabil-
ity Pmaz, and an action according to the Boltzmann
distribution is chosen with probability (1—ppqz). The
probability of selecting action a; in state s is

Q(s,a4)
e T

ZkeQ(Sfak) (8)

where temperature T adjusts the degree of randomness
of action selection.

Prob(a; | s) =



3.3 Learning Parameters

In manipulator task, the observable parameters of
the agent are the angles and angular velocities of the
joints, 601, 02, 91, and 6-. Thus, the state space in this
task is a bounded rectangular region in four dimen-
sions. In this environment, the state space is divided
into 21 x 21 x 11 x 11 tiles, and 10 tilings are used. The
remaining parameter of tile coding and Sarsa()\) algo-
rithm are « = 0.1/m, A = 0.9, 7 = 0.1, and Qo = 0.
The parameter of Max-Boltzmann, pj, 4. is linearly in-
creased from 0.9 to 1.0. The constant physical param-
eters are; the mass of the arms, m; = mo = 1.0; the
length, [; = I3 = 0.2; the length from joint to the cen-
ter of each arm, 71 = ro = 0.1. The time step ¢t = 0.03.
The action is chosen after every one time step. A trial
ends whether 10000 steps are elapsed, or the goal is
reached.

4 Manual Control Experiment

Experiment of manual control is conducted with the
cooperation of 5 subjects. They have no knowledge
about the dynamic response. they observe the ma-
nipulator’s states from visual data, and input torque
7 € (—0.1,0,0.1) given by a joystick. The time limit is
set at 2000 steps, and the number of trial is set at 20
trials a day. The subjects do the same task for a week.
In this experiment, the Q-value is recorded according
to Sarsa(A). The other details of this experiment are
roughly same as RL’s.

5 Experimental Results

5.1 RL Experiment
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Figure 2: Result of learning by Tile Coding Sarsa(\).

The result of RL experiment is shown in Figs. 2 and
3. In Fig. 2, the number of steps indicates how long
the agent takes to achieve the goal. It is clear from Fig.
2 that the steps required to achieve the goal is reduced

Figure 3: Motion of 2PUAM.

and converged. This result shows that it is possible to
learn manipurator task by using RL algorithm. Fig. 3
shows the best trajectory acquired by RL agent. First,
the agent inputs the torque crock wise (CW) in order
to make angle of free joint 0 take the value at which
the arm forms in lower objective position ps. Then the
agent manages to keep the value 65, and drives the end
effector to the goal area with low speed.
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Figure 4: Result of learning by Subjects

Figure 5: Motions of 2PUAM controled by Subjects.

5.2 Manual Control Experiment

From the result of Manual Control Experiment , the
learning pattern of subjects is divided into Group A
and Group B. Fig. 4 shows the typical learning curve
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Figure 6: Input and Trajectory(Group A).
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Figure 7: Input and Trajectory(Group B).

of each group. As shown in Fig. 4, each group first
achieve the goal within a day. However, the failures
and required steps of Group B are notably reduced
from 60 to 80 trials.

Fig. 5 shows the best trajectories, and Fig. 60 Fig.
7 show the time series of each joint angle and input
torque. It is clear from Fig. 5 that Group A’ s is
very similar to RL ' s. That of Group B is also same
as Group A at the beginning. However, at the end,
Group B changed their policy and achieve the goal
much faster than Group A.

5.3 Discussions

As the result of these experiments, some noticeable
points of human learning in 2PUAM environment are
found. The first is that, after once the subjects find a
trajectory to the goal, such as the left side of Fig. 5, all
subjects try to trace the same trajectory and achieve

the goal faster by increasing input. It partly makes
them possible to shorten the time passing through the
trajectory. However, because of 2PUAM’s mechanical
property, it is impossible to slow down the angular ve-
locity of second joint near the end of this trajectory.
Therefore it causes the failure of the first approach. In
this case, Group B searches another way to the goal in
a way of changing the objective position, e.g., from ps
to p1. Therefore, the failure of Group B temporarily
increases during 20 to 40 trials. In an alternating suc-
cession of such approach, they are enable to find the
better trajectory like the right side of Fig. 5. In this
trajectory, it is possible to decelerate each joint speed
near the goal. Hence, it is thought that Group B come
to achieve the goal much faster.

6 Summary

In this paper, RL approach for motion control of
2PUAM was proposed. And the associations between
RL and human learning were investigated. As the
result, some noticeable characteristics about human
learning process were found. In particular, it was re-
alized that the structure of human learning in 2PUAM
has two processes. One is finding the trajectory to the
goal, and another is shortening the time of passing
through the found trajectory.

As future works, we aim to apply these character-
istics into the machine learning process.
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