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Abstract 
In this paper, we propose a new method based on 
evolutionary computation for setting the metaparameters 
of reinforcement learning in order to match the demands 
of the task and reduce the learning time. The basic idea is 
to encode the metaparameters of the reinforcement 
learning algorithm as the agent’s genes, and to take the 
metaparameters of best-performing agents in the next 
generation. We considered a complex task where the 
Cyber Rodent robot has to survive and increase its 
energy level. The results show that appropriate settings 
of metaparameters found by evolution have a great effect 
on the learning time and are strongly dependent on each 
other.  
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1.  Introduction 
 
Reinforcement learning (RL) ([1], [2],[3], [4]) provides a 
sound framework for autonomous agents to acquire 
adaptive behaviors based on reward feedback. The theory 
of RL has been successfully applied to a variety of 
dynamic optimization problems, such as game programs 
([5]), and resource allocation. 

In RL, the learning capabilities are strongly 
dependant on a number of parameters, such as learning 
rate, the degree of exploration, and the time scale of 
evaluation. The appropriate settings of metaparameters 
depend on the environmental dynamics, the goal of the 
task, and the time allowed for learning. The permissible 
ranges of such metaparameters are dependant on 
particular tasks and environments, making it necessary 

for a human expert to tune them usually by trial and error. 
But tuning multiple metaparameters is quite difficult due 
to their mutual dependency, e.g., if one changes the noise 
size, one should also change the learning rate. In addition 
hand tuning of metaparameters is in a marked contrast 
with learning in animals, which can adjust themselves to 
unpredicted environments without any help from a 
supervisor. 

The specific questions we ask in this study are: 1) 
whether GA can successfully find appropriate 
metaparameters subject to mutual dependency and 2) 
how the metaparameters and initial weight connections 
effect the learning time. In our method, the basic idea is 
to encode the metaparameters of the RL algorithm as the 
agent’s genes, and to take the metaparameters of best-
performing agents in the next generation. 

In order to answer these questions, we considered a 
surviving behavior for the Cyber Rodent (CR) robot 
([11]), which is a two wheeled robot with a wide-angle 
camera. The robot must recharge itself by capturing 
active battery packs distributed on the environment. In 
order to see the effect of metaparameters and initial 
weight connections on learning time we considered 
learning with: 1) arbitrarily selected metaparameters and 
random initial weight connections; 2) evolved initial 
weight connections and arbitrarily selected 
metaparameters; 3) evolved metaparameters and random 
initial weight connections; 4) evolved metaparameters 
and initial weight connections. 

Results show that appropriate settings of meta-
parameters can be found by evolution. The learning time 
is significantly reduced when the agent learned using the 
optimized metaparameters and the initial weight 
connections.  

 



 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Cyber Rodent robot. 

 
2.  Cyber Rodent Robot 
 
The CR robot is a two-wheel-driven mobile robot as 
shown in Fig. 1. The CR is 250 mm long and weights 1.7 
kg. The CR is equipped with: 

• Omni-directional C-MOS camera.  
• IR range sensor.  
• Seven IR proximity sensors. 
• 3-axis acceleration sensor.  
• 2-axis gyro sensor.  
• Red, green and blue LED for visual signaling. 
• Audio speaker and two microphones for 

acoustic communication.  
• Infrared port to communicate with a nearby 

agent. 
• Wireless LAN card and USB port to 

communicate with the host computer. 

 
3.  Task and Environment 

 
In the second environment, the CR robot has to survive 
and increase its energy level. The environment has 8 
battery packs, as shown in Fig. 2. The positions of 
battery packs are considered fixed in the environment 
and the CR robot is initially placed in a random position 
and orientation. 

The agent can recharge its own battery by capturing 
active battery packs, which are indicated by red LED 
color. After the robot captures the battery pack, it can 
recharge its own battery for a determined period of time 
(charging time), then the battery pack becomes inactive 
and its LED color changes to green. The battery becomes 
active again after the reactivation time. Therefore, in this 
environment the following parameters can vary: 

• The number of battery packs; 
• The reactivation time; 

• The energy received by capturing the battery pack 
(by changing the charging time); 

• The energy consumed by the agent for 1m motion. 

Based on the energy level and the distance to the 
nearest active battery pack, the agent can select among 
three actions: 1) capture the active battery pack; 2) search 
for a battery pack or 3) wait until a battery pack becomes 
active. In the simulated environment, the batteries have a 
long reactivation time. In addition, the energy consumed 
for 1m motion is low. Therefore, the best policy is to 
capture any visible battery pack (the nearest when there 
are more than one). When there is no visible active 
battery pack, the agent must search in the environment. 
 
 
 
 
 

 
 
 
 
 
 
 

 
Fig. 2. Environment. 

 
4.  Actor-Critic RL 

 
We applied an actor-critic RL. The agent can selects 
among three actions: 1) Capture the active battery pack; 
2) Search for an active battery pack; 3) Wait for a 
determined period of time. The wait behavior is 
interrupted if a battery becomes active or after a pre-
determined period of time. Both networks receive as 
input a constant bias input, the CR battery level and the 
distance to the nearest active battery pack (both 
normalized between 0 and 1). 
 
4.1 The Critic 

 
The critic has a single output cell, whose firing rate is 
calculated as follows: 
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The TD error is calculated as follows: 
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 TD reduces the error by changing the weights, as 
follows: 

][]1[ˆ][]1[ 1 txtrtbtb iii ++=+ ρ  
][]1[ˆ][]1[ 1 tytrtctc iii ++=+ ρ                      (3) 

],[])[sgn(])[1]([]1[ˆ][]1[ 2 txtctytytrtata jiiiijij −++=+ ρ  
where ρ1, ρ2 are the learning rates.  

 
4.2 The actor  
 
The agent can select one of three actions and so the actor 
make use of three action cells, pj, j=1,2,3. The captured 
behavior is considered pre-learned ([6]). When the search 
behavior is activated, the agent rotates 10 degrees 
clockwise. The agent does not move when the wait 
behaviour becomes active. The output of action neurons 
is calculated as follows:  
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=  and n is the number of hidden 

neurons 

A winner-take-all rule prevents the actor from 
performing two actions at the same time. The action is 
selected based on the softmax method as follows: 
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where τ is the temperature of the algorithm. 
 

Table 1. GA functions and parameters. 

The actor weights are adapted as follows: 
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5. Evolution of Metaparameters 
 
In our implementation, a real-value GA was employed in 
conjunction with the selection, mutation and crossover 
operators (Table 1). 

The fitness function in the surviving behavior is 
considered as follows: 
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where CRlife is the CR life in seconds, 
max_learning_time is the maximum learning time, Enlevel 
is the level of energy if the agent survives but the battery 
is not fully recharged and Enmax is the maximum level of 
energy. The maximum learning time is 7200 s. The value 
of Enmax is 1 and Enlevel varies between 0 and 1. Based on 
this fitness function the agents that can not survive get a 
better fitness if they live longer. The agents that survive 
get a better fitness if the energy level at the end of 
maximum learning time is higher. The agents that 
learned to fully recharge their battery faster get the 
highest fitness value.  

In order to see the effect of metaparameters and 
initial weight connections on learning time, we 
considered the following cases: (a) Evolution of meta-
parameters, initial weight connection of actor and critic 
networks, and the number of hidden neurons; (b) 
Evolution of meta-parameters with randomly initialized 
weight connections; (c) Evolution of initial weight 
connections with arbitrary selected meta-parameters; (d) 
Learning with arbitrary selected meta-parameters and 
randomly initialized weight connections. 
 
6. Results 
 
In order to determine the energy level after each action, 
we measured the battery level of CR when the robot 
moves with a nearly constant velocity of 0.3m/s. The 
collected data are shown in Fig. 3. The graph shows that 
there is a nonlinear relationship between time and energy 
level. Therefore, we used the virtual life time to 
determine the energy level after each action. Except 
capturing the battery pack, the search and wait actions 
increased the virtual life time.  

Function Name Parameters 
Arithmetic Crossover 2 
Heuristic Crossover [2 3] 
Simple Crossover 2 
Uniform Mutation 4 
Non-Uniform Mutation [4 GNmax 3] 
Multi-Non-Uniform Mutation [6 GNmax 3] 
Boundary Mutation 4 
Normalized Geometric Selection 0.08 



First, learning took place with arbitrarily selected 
metaparameters (Table 2) and random initial weight 
connections. The agent continued learning for nearly 
5500s until the battery was fully recharged (Figure 4). 
Then, using the same metaparameters and neural 
structure, we evolved the initial weight connections. 
Initially, 100 individuals are created and the evolution 
terminated after 20 generations. Figure 4 shows that 
learning time is reduced. 

When the metaparameters are evolved and initial 
weight connections are randomly selected, the learning 
time is significantly reduced (Figure 4). This result is 
important because it shows that metaparameters has 
larger effect on learning time compared to initial weight 
connections. The searching interval and GA results, 
when both metaparameters and initial weight connections 
are optimized by GA, are shown in Table 3. The critic 
and actor networks have 1 and 3 hidden neurons, 
respectively. The initial value of weight connections are 
very near with their respective values after learning. In 
addition, the optimized value of cooling factor is low. 
Therefore, the agent starts to exploit the environment and 
make greedy actions soon after the learning starts, 
recharging its own battery in a very short time. 

 
Table 2. Values of metaparameters  

Parameters Values 
Initial Weights Randomly between [-0.5 0.5] 
ρ1, ρ2, α1, α2 0.2; 0.1; 0.8; 0.3 

τ0 10 
γ 0.9 
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Fig. 3. Battery level during CR motion.  

 
Table 3. Searching space and GA results. 

Optimized 
 parameters 

Searching  
interval 

Results 

Initial Weights [-1 1]  
ρ1, ρ2, α1, α2 [0 1] 0.9210; 0.3022; 

0.9256; 0.6310 
τ 0 [1 10] 5.3718 
γ [0 1] 0.794 
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 Fig. 4. Energy level of the best agent for different 
combinations of learning and evolution. 
 
7.  Conclusion 
 
In this paper, we presented a method to optimize the 
metaparameters in RL based on evolutionary approach. 
Based on the simulations and experimental results we 
conclude: 

 Evolutionary algorithms can be successfully applied 
to determine the optimal values of metaparameters. 

 Meaparameters play important role on the agent 
learned policy. 

 Optimized metaparameters can significantly reduce 
the learning time. 

In the future, we are interesting to see if evolution 
can also be applied to shape the reward function used 
during the learning process.  
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