

Evolution of Metaparameters for Efficient Real Time Learning

Genci Capi1, Masao Yokota1 and Kenji Doya2

1Faculty of Information Engineering

Fukuoka Institute of Technology
3-30-1 Wajiro-Higashi, Higashi-ku, Fukuoka, 811-0195, Japan

2 CREST, Japan Science and Technology Agency (JST)

ATR, Computational Neuroscience Laboratories
“Keihanna Science City”, Kyoto, 619-0288, Japan

capi@fit.ac.jp

Abstract
In this paper, we propose a new method based on
evolutionary computation for setting the metaparameters
of reinforcement learning in order to match the demands
of the task and reduce the learning time. The basic idea is
to encode the metaparameters of the reinforcement
learning algorithm as the agent’s genes, and to take the
metaparameters of best-performing agents in the next
generation. We considered a complex task where the
Cyber Rodent robot has to survive and increase its
energy level. The results show that appropriate settings
of metaparameters found by evolution have a great effect
on the learning time and are strongly dependent on each
other.

KEY WORDS
Actor-critic Reinforcement Learning, Genetic Algorithm,
metaparameters.

1. Introduction

Reinforcement learning (RL) ([1], [2],[3], [4]) provides a
sound framework for autonomous agents to acquire
adaptive behaviors based on reward feedback. The theory
of RL has been successfully applied to a variety of
dynamic optimization problems, such as game programs
([5]), and resource allocation.

In RL, the learning capabilities are strongly
dependant on a number of parameters, such as learning
rate, the degree of exploration, and the time scale of
evaluation. The appropriate settings of metaparameters
depend on the environmental dynamics, the goal of the
task, and the time allowed for learning. The permissible
ranges of such metaparameters are dependant on
particular tasks and environments, making it necessary

for a human expert to tune them usually by trial and error.
But tuning multiple metaparameters is quite difficult due
to their mutual dependency, e.g., if one changes the noise
size, one should also change the learning rate. In addition
hand tuning of metaparameters is in a marked contrast
with learning in animals, which can adjust themselves to
unpredicted environments without any help from a
supervisor.

The specific questions we ask in this study are: 1)
whether GA can successfully find appropriate
metaparameters subject to mutual dependency and 2)
how the metaparameters and initial weight connections
effect the learning time. In our method, the basic idea is
to encode the metaparameters of the RL algorithm as the
agent’s genes, and to take the metaparameters of best-
performing agents in the next generation.

In order to answer these questions, we considered a
surviving behavior for the Cyber Rodent (CR) robot
([11]), which is a two wheeled robot with a wide-angle
camera. The robot must recharge itself by capturing
active battery packs distributed on the environment. In
order to see the effect of metaparameters and initial
weight connections on learning time we considered
learning with: 1) arbitrarily selected metaparameters and
random initial weight connections; 2) evolved initial
weight connections and arbitrarily selected
metaparameters; 3) evolved metaparameters and random
initial weight connections; 4) evolved metaparameters
and initial weight connections.

Results show that appropriate settings of meta-
parameters can be found by evolution. The learning time
is significantly reduced when the agent learned using the
optimized metaparameters and the initial weight
connections.

Fig. 1. Cyber Rodent robot.

2. Cyber Rodent Robot

The CR robot is a two-wheel-driven mobile robot as
shown in Fig. 1. The CR is 250 mm long and weights 1.7
kg. The CR is equipped with:

• Omni-directional C-MOS camera.
• IR range sensor.
• Seven IR proximity sensors.
• 3-axis acceleration sensor.
• 2-axis gyro sensor.
• Red, green and blue LED for visual signaling.
• Audio speaker and two microphones for

acoustic communication.
• Infrared port to communicate with a nearby

agent.
• Wireless LAN card and USB port to

communicate with the host computer.

3. Task and Environment

In the second environment, the CR robot has to survive
and increase its energy level. The environment has 8
battery packs, as shown in Fig. 2. The positions of
battery packs are considered fixed in the environment
and the CR robot is initially placed in a random position
and orientation.

The agent can recharge its own battery by capturing
active battery packs, which are indicated by red LED
color. After the robot captures the battery pack, it can
recharge its own battery for a determined period of time
(charging time), then the battery pack becomes inactive
and its LED color changes to green. The battery becomes
active again after the reactivation time. Therefore, in this
environment the following parameters can vary:

• The number of battery packs;
• The reactivation time;

• The energy received by capturing the battery pack
(by changing the charging time);

• The energy consumed by the agent for 1m motion.

Based on the energy level and the distance to the
nearest active battery pack, the agent can select among
three actions: 1) capture the active battery pack; 2) search
for a battery pack or 3) wait until a battery pack becomes
active. In the simulated environment, the batteries have a
long reactivation time. In addition, the energy consumed
for 1m motion is low. Therefore, the best policy is to
capture any visible battery pack (the nearest when there
are more than one). When there is no visible active
battery pack, the agent must search in the environment.

Fig. 2. Environment.

4. Actor-Critic RL

We applied an actor-critic RL. The agent can selects
among three actions: 1) Capture the active battery pack;
2) Search for an active battery pack; 3) Wait for a
determined period of time. The wait behavior is
interrupted if a battery becomes active or after a pre-
determined period of time. Both networks receive as
input a constant bias input, the CR battery level and the
distance to the nearest active battery pack (both
normalized between 0 and 1).

4.1 The Critic

The critic has a single output cell, whose firing rate is
calculated as follows:

∑
=

+∑
=

=
m

i iyicix
i ibcO

1

3

1
 (1)

where m is the number of hidden neurons,

∑
=

=
3

1
)(

j
jxijagiy , se

sg −
+

=
1

1
)(.

The TD error is calculated as follows:

++
=+

otherwise][k1]r[t
 statestart theif 0

]1[
t

tr
νγ

)
, (2)

using the reward
 .50/)_1_(1 tlevelEntlevelEntr −+=+

 TD reduces the error by changing the weights, as
follows:

][]1[ˆ][]1[1 txtrtbtb iii ++=+ ρ
][]1[ˆ][]1[1 tytrtctc iii ++=+ ρ (3)

],[])[sgn(])[1]([]1[ˆ][]1[2 txtctytytrtata jiiiijij −++=+ ρ
where ρ1, ρ2 are the learning rates.

4.2 The actor

The agent can select one of three actions and so the actor
make use of three action cells, pj, j=1,2,3. The captured
behavior is considered pre-learned ([6]). When the search
behavior is activated, the agent rotates 10 degrees
clockwise. The agent does not move when the wait
behaviour becomes active. The output of action neurons
is calculated as follows:

)
3

1
(∑
=

=
j jxijdgiz , (4)

∑
=

∑
=

+=
3

1 1
)(

i

n

i izijfixijegip , (5)

where sexp1

1
g(s) −+

= and n is the number of hidden

neurons

A winner-take-all rule prevents the actor from
performing two actions at the same time. The action is
selected based on the softmax method as follows:

∑
=

= 3

1

),(

),(

)(
),(

i

sap

sap

t
i

i

e

esaP
τ

τ
, (6)

where τ is the temperature of the algorithm.

Table 1. GA functions and parameters.

The actor weights are adapted as follows:
][])[][](1[ˆ][]1[1 txtptqtrtete iii −++=+ α
][])[][](1[ˆ][]1[1 tztptqtrtftf iii −++=+ α (7)

][])[][])([sgn(

])[1]([]1[̂][]1[2

txtptqtf

tztztrtdtd

ji

iiijij

−

−++=+ α

5. Evolution of Metaparameters

In our implementation, a real-value GA was employed in
conjunction with the selection, mutation and crossover
operators (Table 1).

The fitness function in the surviving behavior is
considered as follows:

+

+=

rechargedfully battery _
survivesagent if1

diesaget if
_

max
life

level

life

CR
tlearnEn

En
tlearn

CR

Fitness

where CRlife is the CR life in seconds,
max_learning_time is the maximum learning time, Enlevel
is the level of energy if the agent survives but the battery
is not fully recharged and Enmax is the maximum level of
energy. The maximum learning time is 7200 s. The value
of Enmax is 1 and Enlevel varies between 0 and 1. Based on
this fitness function the agents that can not survive get a
better fitness if they live longer. The agents that survive
get a better fitness if the energy level at the end of
maximum learning time is higher. The agents that
learned to fully recharge their battery faster get the
highest fitness value.

In order to see the effect of metaparameters and
initial weight connections on learning time, we
considered the following cases: (a) Evolution of meta-
parameters, initial weight connection of actor and critic
networks, and the number of hidden neurons; (b)
Evolution of meta-parameters with randomly initialized
weight connections; (c) Evolution of initial weight
connections with arbitrary selected meta-parameters; (d)
Learning with arbitrary selected meta-parameters and
randomly initialized weight connections.

6. Results

In order to determine the energy level after each action,
we measured the battery level of CR when the robot
moves with a nearly constant velocity of 0.3m/s. The
collected data are shown in Fig. 3. The graph shows that
there is a nonlinear relationship between time and energy
level. Therefore, we used the virtual life time to
determine the energy level after each action. Except
capturing the battery pack, the search and wait actions
increased the virtual life time.

Function Name Parameters
Arithmetic Crossover 2
Heuristic Crossover [2 3]
Simple Crossover 2
Uniform Mutation 4
Non-Uniform Mutation [4 GNmax 3]
Multi-Non-Uniform Mutation [6 GNmax 3]
Boundary Mutation 4
Normalized Geometric Selection 0.08

First, learning took place with arbitrarily selected
metaparameters (Table 2) and random initial weight
connections. The agent continued learning for nearly
5500s until the battery was fully recharged (Figure 4).
Then, using the same metaparameters and neural
structure, we evolved the initial weight connections.
Initially, 100 individuals are created and the evolution
terminated after 20 generations. Figure 4 shows that
learning time is reduced.

When the metaparameters are evolved and initial
weight connections are randomly selected, the learning
time is significantly reduced (Figure 4). This result is
important because it shows that metaparameters has
larger effect on learning time compared to initial weight
connections. The searching interval and GA results,
when both metaparameters and initial weight connections
are optimized by GA, are shown in Table 3. The critic
and actor networks have 1 and 3 hidden neurons,
respectively. The initial value of weight connections are
very near with their respective values after learning. In
addition, the optimized value of cooling factor is low.
Therefore, the agent starts to exploit the environment and
make greedy actions soon after the learning starts,
recharging its own battery in a very short time.

Table 2. Values of metaparameters

Parameters Values
Initial Weights Randomly between [-0.5 0.5]
ρ1, ρ2, α1, α2 0.2; 0.1; 0.8; 0.3

τ0 10
γ 0.9

1400

1600

1800

2000

2200

2400

2600

0 1000 2000 3000 4000

time[s]

en
er

gy
 le

ve
l

Fig. 3. Battery level during CR motion.

Table 3. Searching space and GA results.

Optimized
 parameters

Searching
interval

Results

Initial Weights [-1 1]
ρ1, ρ2, α1, α2 [0 1] 0.9210; 0.3022;

0.9256; 0.6310
τ 0 [1 10] 5.3718
γ [0 1] 0.794

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000

time [s]

en
er

gy
 le

ve
l

evol. metaparam and init weight

evol. metaparam / rand. init weight

evol. init weight /arbitrary metaparam

arbitrary metaparam/rand init weight

 Fig. 4. Energy level of the best agent for different
combinations of learning and evolution.

7. Conclusion

In this paper, we presented a method to optimize the
metaparameters in RL based on evolutionary approach.
Based on the simulations and experimental results we
conclude:

 Evolutionary algorithms can be successfully applied
to determine the optimal values of metaparameters.

 Meaparameters play important role on the agent
learned policy.

 Optimized metaparameters can significantly reduce
the learning time.

In the future, we are interesting to see if evolution
can also be applied to shape the reward function used
during the learning process.

References:
[1] Barto AG(1995), Reinforcement learning. In M. A.
Arbib (Ed.), The handbook of brain theory and neural
networks, (pp. 804–809). Cambridge, MA: MIT Press.
[2] Doya K (2000), Reinforcement learning in continuous
time and space. Neural Computation, 12:215–245.
[3] Doya K, Kimura H, Kawato M (2001),
Computational approaches to neural mechanism of
learning and control. IEEE Control Systems Magazine,
21(4):42–54.
[4] Sutton RS, Barto AG (1998), Reinforcement learning.
Cambridge, MA, MIT Press.
[5] Tesauro G (1994), TD-Gammon, a self teaching
backgammon program, achieves master-level play.
Neural Computation, 6:215–219.
[6] Capi G, Uchibe E, Doya K (2002). Selection of neural
Architecture and the environment Complexity. Advanced
Intelligence, Vol. 6, pp. 311-317, Editors: K. Murase and
T. Asakura.

