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MESSAGE

Masanori Sugisaka
General Chairman of AROB
(Professor, Oita University)

It is my great honor to invite you all to the upcoming International Symposium on
Artificial Life and Robotics. The first symposium was held in February (18-20) 1996, B-Con
Plaza, Beppu, Oita, Japan. That symposium was organized by Oita University under the
sponsorship of the Japanese Ministry of Education, Science, Sports, and Culture
(Monbusho), and co-sponsored by Santa Fe Institute (USA), SICE, RSJ, and IEEJ, (Japan).
This symposium invites you to discuss the development of new technologies in the 21st
century, concerning Artificial Life and Robotics, based on simulation and hardware.

I would like to express my sincere thanks to the Science and International Affairs
Bureau, Monbusho, Japanese Government, for their repeated support.

We hope that AROB will facilitate the establishment of an international joint research
institute on Artificial Life and Robotics. I hope that you will obtain fruitful results from the
exchange of ideas during the symposium.

{2” M(mwm"\ >é/{ M
M. Sugisaka ’

January 5, 2001



MESSAGE

John L. Casti
Vice Chairman of AROB
(Professor, Santa Fe Institute, USA)

For the past 300 years or more, science has focused on understanding the material structure
of systems. This has been evidenced by the primacy of physics as the science par excellence,
with its concern for what things are made of. The most basic fact about science in the 21st
century will be the replacement of matter by information. What this means is that the central
focus will shift from the material composition of systems—what they are—to their functional
characteristics—what they do. The ascendancy of fields like artificial intelligence, cognitive
science, and now artificial life are just tips of this iceberg.

But to create scientific theories of the functional/informational structure of a system requires
employment of a totally different type of laboratory than one filled with retorts, test tubes or
bunsen burners. Rather than these labs and their equipment designed to probe the material
structure of objects, we now require laboratories that allow us to study the way components
of systems are connected, what happens when we add/subtract connections, and in general,
experiment with how individual agents interact to create emergent, global behavioral patterns.

Not only are these “information labs” different from their “matter labs” counterparts. There
is a further distinction to be made even within the class of information labs. Just as even the
most well-equipped chemistry lab will help not one bit in examining the material structure of,
say, a frog or a proton, a would-be world designed to explore traders in a financial market will
shed little, if any, light on molecular evolution.

Since the very first Artificial Life meeting in 1987 in Los Alamos, New Mexico, the Santa Fe
Institute (SFI) has been at the forefront of this shift in emphasis from matter to information.
By the same token, SFI has actively supported such research initiatives in every corner of the
world. This support has extended to the Artificial Life and Robotics meetings here in Japan,
since the time of the very first meeting in 1996. Each year, researchers from the SFI faculty
have come to Japan to meet with others at these AROB meetings, in order to present edge-of-
the-frontier ideas and to exchange views on how the fields of ALife and robotics are progressing.
So it is a great pleasure for me to again represent SFI on the Organizing Committee of AROBS,
and to welcome everyone to this event.

J3.L. Casti

January 5, 2001
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MESSAGE

Hiroshi Tanaka
Program chairman of AROB
(Professor, Tokyo Medical and Dental University)

On behalf of the program committee, it is truly my great honor to invite you all to the
Sixth International Symposium on Artificial Life and Robotics (AROB 6th ’01). This
symposium is made possible owing to the cooperation of Oita University and Santa Fe
Institute. We are also debt to Japanese academic associations such as SICE, RSJ, and
several private companies. I would like to express my sincere thanks to all of those who
make this symposium possible.

As is needless to say, the complex systems or Alife approach now attracts wide interests as
a new paradigm of science and engineering. Take an example in the field of bioscience. As is
well known by the name of HGP (Human Genome Project), vast amount of genome
information brings about not only from human genome but also various species like several
bacterias, yeast, warm, fly. However, as a plenty of genome data becomes available, it
becomes sincerely recognized that the framework by which these genome data can be
understood to make a whole picture of life is critically needed. The complex systems or Alife
approach is now actually expected to be an efficient methodology to integrate this vast
amount of data.

This example shows the complex system approach is very promising and becomes widely
accepted as a paradigm of next generation of science and engineering. We hope this
symposium becomes a forum for exchange of the ideas of the attendants from various fields
who are interested in the future possibility of complex systems approach.

I am looking forward to meeting you in Tokyo.

ot Tonne

H. Tanaka

January 5, 2001
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L. Siwek (Wroclaw University of Technology, Poland)
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H. Bae, S. Kim, M.H. Lee (Pusan National University, Korea)
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Y. Kawazoe (Saitama Institute of Technology, Japan)
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K. Khouri (Northwest Mississippi Community College, USA)
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Y. G. Pegio (University of Kobe, Janpan)



MB1-6 The physical constraint programming for real emergent system e offprint

K Hajiri (IBM Tokyo Research Laboratory, Japan)

MB2: Communications with Life-like Creatures and Robots (Organized Session)

(Room Kaede)

MB2-1 What is the ultimate form of communications ? e 45
R. Nakatsu (ATR, Japan)

MB2-2 Muu: Embodied interface for social bonding e offprint
S. Shoji, N. Suzuki, M. Okada (ATR, Japan)

MB2-3 Robovie: Communication technologies for a Social Robot w50
M. Imai, T. Ono, H. Ishiguro (ATR, Japan)

MBZ2-4 Mixing with Aliens: Life and music on Gakki-mon Planet oo offprint

R. Berry, P. Dahlstadt, C. Haw (ATR, Japan)

MB3: Neural Network, Recognition and Behavior Control (Organized Session)
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MB3-1 Integration system for emotional recognition using visible and infrared
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observations e 58
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N. Azuma (Hirosaki University, Japan)
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continuous speech e 62
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MB3-4 Evolutionary robot controllers with competitive and cooperative neural
network e 66

A. Todaka, T. Kitazoe, M. Tabuse, K. Sugihara (Miyazaki University, Japan)
MB3-5 Control systems for real robot using classifier systems e 70

T. Jinguuji, M. Tabuse, K. Sugihara (Miyazaki University, Japan)

MC1: Genetic Algorithms and Evolutionary Computation I (General Session)
(Room Natsume)

MC1-1 Evolutionary simulations of "SUMIWAKE" habitat segregation in a
finite and heterogeneous ecosystem e 73
T. Oohashi, T. Maekawa, (ATR, Japan)
0. Ueno, (Gifu University School of Medicine, Japan)
N. Kawai, (Foundation for Advancement of International Science, J apan)
E. Nishina, (National Institute of Multimedia Education, Japan)

XMC1-2 4 macro-micro evolutionary algorithm: multi agents model for optimization 77

S. K. Oh, K. H. Seo, J. J. Lee (Korea Advanced Institute of Sience and Technology,
Korea)

%This paper would be changed from oral session to poster session.

MC1-3 DNA computing for shortest path problem e 81
N. Matsuura, M. Yamamoto, T. Shiba, A. Ohuchi (Hokkaido University, J apan)

MC1-4 The optimization of neural network structure using genetic algorithm RN 85

M. Itou, M. Sugisaka (Qita University, Japan)

MC2: Neural Networks I (General Session)(Room Natsume)

MC2-1 Self-learning probabilistic neural network hardware using reconfiguable LSIs " 89

N. Aibe, M. Yasunaga (University of Tsukuba, J apan)
I. Yoshihara (Miyazaki University, Japan)
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In AROBSth, we proposed a solution to path planning of a mobile robot. In our approach, we
formulated the problem as a discrete optimization problem at each time step. To solve the
optimization problem, we used an objective function consisting of a goal term, a smoothness term
and a collision term. While the results of our simulation showed the effectiveness of our approach,
the values of weights in the objective function were not given by any theoretical method. This
paper presents a theoretical method using reinforcement learning for adjusting the weight
parameters. We applied Williams’s learning algorithm, episodic REINFORCE, to derive a learning
rule for the weight parameters. We verified the learning rule by some experiments.

Key Words: Path planning, Mobile robot, Optimization problem, Reinforcement learning

1 Introduction

There have been many works on the navigation [1]
and motion planning [2] of mobile robots. For motion
planning, property of a problem depends on the
constraints imposed on the motion of a robot. This
includes bounds on the velocity or acceleration of a
robot as well as constraints on the curvature of paths.
Moreover, different tasks require different criteria for
estimating paths or trajectories. For example, users of
an automatic motion planner may require the shortest
path or the safest path depending on the task the user
wants to make the robot do.

In a previous paper, we proposed a solution to
navigation and motion planning of a mobile robot[3].
Our approach for navigation can be regarded as an
approximation of Markov localization[4]. For motion
planning, we defined and minimized an objective
function that includes a goal term, a smoothness term
and a collision term.

While the results of our simulation showed the
effectiveness of our approach, the values of weights
in the objective function were given only by a
heuristic method. This paper presents a theoretical
method using reinforcement learning for adjusting the
weight parameters used in the action decision of a
robot. In our reinforcement learning, a value function
is defined by the expectation of a reward given to a
robot’s trajectory. Trajectories are generated
stochastically because we used a probabilistic policy
with a Boltzmann distribution function for
determining the actions of the robot. This
probabilistic policy optimizes the local objective
function stochastically to search for the globally
optimal trajectory. However, the stochastic process is

not a Markov decision process because the objective
function includes an action at the preceding time in
the smoothness term. The usual Q-learning method
cannot be applied to such a non-Markov decision
process. Thus, we applied Williams’s learning
algorithm, episodic REINFORCE[5], to derive a
learning rule for the weight parameters. The learning
rule obtained here maximizes the value function
stochastically. That was verified by our experiments.

2 Objective Function for Path Planning

We assume that a series of actions decided at each
time step would derive a desirable path or trajectory
of a robot. We define the following objective function
E, of a velocity v, at time t,

Ev(vl;’;’vl-l’ '}wl) = blEgoal + bZE:mlh + bJEcIsn . (l)

The minimal solution of Eq. (1) gives an estimate for
the robot’s action at time t.

The first term in the right-hand side of Eq. (1),
Egoal, represents an attractive force to the goal rgoq. It
is defined as

E oot (Vi Fop) = sgn[G(v,)]‘ G(v, )2 , )
where sgn(x) denotes the sign of x and G(v,) is
defined by

G("t) = “rgoal - ’;:»l("l;rl)u_ "rgoal - ’;" (3)
The position r'.; is the robot's position at time t+1 if
the robot moves at the velocity v, from the position r,.
The second term in Eq. (1), Equm, is defined by

Esmlh(vl;vl—l) = II"I - v'—lll2 (4)
to minimize changes in a robot’s velocity vector. The
last term in Eq. (1), Eqm, represents a repulsion force
for avoiding collisions with obstacles and walls. We
define the term as
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D, if Dist(r/,) <0

- Disi(r; m) if 0<Dist(r/,)<L ,(5)
-1} if Dist(r},)>L

where Dist(r) means the shortest distance from the
robot’s position r to obstacles and walls. The constant
Dy represents a degree of penalty given when the
robot collides with obstacles or walls. It is usually set
to a large positive value. The size L means a range
within which the repulsion force starts to work on a
robot. The strength of the repulsion force is
calculated by using the distance to obstacles or walls
not from the present position r, but from the predicted
position r’y,. In our simulation in Section 5, we set
Dc1sn =100000 and L=15.

Thrun et al. proposed another optimization
approach for motion planning [6]. In their approach, a
non-Markov term, such as Egun shown in Eq. (4), was
not taken into account.

E clsn (V )

3 Search Space

We restricted and discretized a search space when
minimizing the function E,(v;). We only took into
account velocity vectors whose lengths were smaller
than a constant. Figure 1 shows the search space used
in our simulation in Section 5.

4 Learning Weights of Terms
4.1 Value Function and Probabilistic Policy
Shapes of trajectories given by minimizing E.(v,)
depend on weights of terms, {b;}(j=1,2,3)[3]. In order
to control the weights properly, we applied a
reinforcement learning, episodic REINFORCE[5],
which was proposed by Williams in 1992, to motion
planning,

We define a value function V(x), which is an
expectation of a reward given to a trajectory /;, as

V()= E[R(1)] ()
=2P(lf)'R(1i)’ ™

where P(/) is a probability that trajectory / is
produced by a policy © and R(/) is a reward function
representing user satisfaction to a trajectory /. A
trajectory /; is a series of robot’s positions at times
t(t=0,1,...,N).

We define the policy m using a Boltzmann
distribution function as

e—E‘.(v,)/T
”(V,;r,ar,_n{bk})gz—e_mr, @)

where E(vy) is the ojective function shown in Eq. (1)
and T is a parameter to control the randomness in
choosing an action v, at each time. If we set T=0, it
represents a deteministic decision process where
every v, gives the minimal solution of E, in Eq. (1) at

38

20°

22
Fig. 1 Area searched for the optimal velocity of a robot

every time step. On the contrary, a completely
randomized selection of actions occurs when T=09
In Williams’s episodic REINFORCE algorithm[5], he
used a neural network model for a policy . However,
we used a Boltzmann distribution function that
includes an objective function E(v,) as en energy
function. The objective function can represent a
heuristics for action decision and reduce the number
of parameters.

4.2 Steepest Gradient Methed

We use the steepest gradient method for maximizing
the value funciton in Eq. (7). We have to caluculate
the right-hand side of the following equation:

@)= S r0) ©

The probability distribution P(/}) is expressed by a
product of P™(rr,.)’s as
P(ll)=Pﬁ(’b”i)P’r(’i’rz)“'Px("N,-prN, )’ (10)
where P'(ry,1..1) is a probability that a robot moves to
position r.; when it stands at r, and takes a policy 7.
By differentiating the right-hand side of Eq. (10) with

bk, we obtained
N,—l -1
pPr —PF .(11)
a b prs ["SI:L' ( n’ n+l (';,';ﬂ )}
By substituting the followmg equation into the
right-hand side of Eq. (11),
P (r.1) = X P (futis)- (V) (12)
we obtained that ’
v )
P :+|) ZP' {ab ("r;'?"?-v{bk})}
= EP”'( .*.)ﬂ [lnﬂ i {0 )]
-ZP” (r.r)m(v,) e,((t) (13)

where e,(( ) is called the characteristic eligibility of
by[5]. Substituting Eq. (13) into the right-hand side of
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«J start
=(500,270)

Fig. 2 Robot’s world in our simulation

Eq. (11), we obtained from Eq. (9) that
2 vm)=o] 10) | 14

=0

This is the same result that Williams derived as his
episodic REINFORCE algorithm 51

However, we obtained a different updating rule
from the REINFORCE algorithm because we used
Eq. (8) instead of a neural network model for action
decision. Using Eqs. (1) and (8), the characteristic
eligibility of by, is expressed as

)
e(t)= 5;’:[1“7‘("';’},’?-1,{1’1:})] (15)
=_.1_{3_EL_<3_EL> } , (16)
T| 3 \ob [y,

where operation <..> refers to the expectation
weighted with a Boltzmann factor, i.e.,

ZX'E—E"(V';’;J"—"{I’*))/T

= a7

(X)T,{bk} = ze—Ev("t'vrlf’:—l'{bk})/r
By substituting Eq. (16) into e(t) in Eq. (14) and
using the steepest gradient method, we can derive the
following learning rule of weights {by} (k=1,2,3):
v (m) (18)
ab,

£ R {GE_<1€_> } .(19)
T ()2; 3, \ob, [

The constant ¢ is a learning rate factor to be set at a
positive small number.

Moreover, we found that the parameters b,'s
converge without the averaging operator E[...] in Eq.
(19) by analogy with the error back-propergation
algorithm in a multilayer network model[7]. We used
the learning rule without the operator E[...] in the
experiments in the next section.

Ab, =+€

10

0 &« g r 6

Fig. 3 General shape of achievement function

5 Simulation

5.1 Environment of a Robot

We consider a sample problem where a single robot
moves to a goal from a starting position while
avoiding static obstacles. Figure 2 shows the
locations of obstacles, walls, the start point at
(500,270), and the goal point at (80,180). In Fig. 2, a
short circle having a radius of 8.0 and a short line
drawn from the circle’s center indicate the robot’s
position and front direction, respectively. Note that
the robot has no body and that the short circle and
line in Fig. 2 were used as a matter of convenience to
show the robot’s position and posture.

5.2 Reward Function

Let us assume that the objective of this sample
problem is to find the trajectory that minimizes the
robot’s moving time from the start point to the goal
point and keeps a safe distance from obstacles and
walls. To find such a trajectory, we consider the
following reward function R(/) reflecting these two
requirements :

R()=cR,. (! )+ e, Ri(l) (20)
where Rgne(/) represents the degree of user
satisfaction to the moving time from the start to the
goal in a trajectory /. The function Rg,(/) represents
the degree of user satisfaction to the shortest distance
from the robot to obstacles and walls if a robot moves
along a trajectory [ We call these functions
achievement functions because they represent the
degrees of achievement of user requirements on a
trajectory. We give a large reward if the trajectory
greatly satisfies the user of this planning system. We
used the trapezoid-like functions shown in Fig. 3 as
achievement functions. They take a value between 0
and 10 and are characterized by the parameters, o, [3,
y and 3. The total reward R is obtained by averaging
the values of the two achievement functions with
weights ¢, and c,.

In our experiment, we set o=p=0, v=20,5=50 for
Rino(D) and o=0, p=15, y=5=2000 for Ryq()). This
means that trajectories whose moving times are
shorter than 20 and trajectories that force a robot to
keep a distance longer than 15 are most desirable.
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Fig.4 Results of experiment I, when ¢,=0.6 and
¢;=0.4: (a) R, Ryne and Ry averaged over ten
thousand learning steps (b) by, b, and b; (c) The
trajectory obtained deterministically after learning
{b;} (5=1,2,3) two hundred thousand times

5.3 Experimental Conditiens

We set initial values of b.’s as b=b,=b;=1.0.
Parameter T is set at 5.0 and not decreased during the
search. This means that we did not carry out any
annealing procedure. A learning rate factor ¢ in Eq.
(19) is set at 0.00001. The weights c, and c, in Eq.
(20) are set as ¢,=0.6, c,=0.4 in experiment I and
¢,=0.4, ¢,=0.6 in experiment II.

Under these experimental conditions, we
generated a trajectory using the policy r in Eq. (8),
evaluated the reward to the trajectory by Eq. (20) and
updated weights {b,}(k=1,2,3) without carrying out
the expectation operator E[..] in Eq. (19). We
repeated this learning cycle two hundred thousand
times in our experiment. It took about 200 minutes to
complete one experiment using a work station, SUN
Ultra Sparc 30 (CPU: Ultra Sparc-II, 248 MHz).
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5.4 Experimental Results ‘
Figure 4 shows the results of experiment 1. In
Fig.4(a), changes in R, Ry, and Ry, are shown. The
values are averaged over each period of ten thousand
learning steps. Changes in parameters {b,}(k=1,2,3)
are shown in Fig. 4(b). The trajectory obtained
deterministically with the weight parameters that had
been learned two hundred thousand times is shown in
Fig.4(c). Figure 5 shows the results of experiment II.
Figure 6 shows the trajectory obtained using
unlearned values. When obtaining the trajectories
shown in Fig.4(c), Fig.5(c) and Fig.6, the parameter
T was set to a very small positive. They were equal to
trajectories given by a deterministic theory that
minimizes E,(v,) at each time step. The probabilistic
policy m with a finite value of T makes the trajectory
given by a deterministic theory fluctuate. The
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Fig. 6 The trajectory obtained deterministically
with weights that had not been learned

fluctuation contributes to searching for the optimal
trajectory that maximizes the value function V(r) in
Eq. (6).

5.5 Discussion

In experiment I, the weight b, of the goal term
increased gradually. That reduced the travelling time
from 25 steps to 23 steps. In experiment II, the
problem that the robot ran into an obstacle at time 15
shown in Fig.6 was solved by learning without
delaying the robot’s arrival time. This improvement
comes from the improvement in the second term Ry
in Eq. (20). The function R forces a robot to keep a
certain distance from obstacles and walls for safety.
Figure 5(b) shows that this improvement was caused
by the increse of the value of b;, which is the weight
of the collision term E, in E (v).

Moreover, the trajectory was not only improved
locally. A global change in trajectory was achieved.
That is because the weights {b;} in Eq.(1) do not
depend on the robot’s position. Thus, if we would
like to-‘change trajectories locally to search for the
optimal trajectory, we had better consider term
weights {b,(r)}(k=1,2,3) that depend on the robot’s
position r. Our learning rule can be applied to by(r) in
the same way as applied to by.

6 Terms to Escape from Local Minima
The objective function defined in Eq.(1) sometimes
misleads a robot to a local minimum if the
arrangement of obstacles is complicated as a maze.
We can add a term to E,(v,) so as to escape from local
minima. We will show two examples.

The first example is E,,, that is defined by,

Eescl(vl;rt)=b4(rl)'vt’ (21)
where the local vector field by(r) shows a desirable
direction at position r. The second example is a term
that includes attractive forces to sub-goals. For
example, it is defined by

Emz (vl;rn)= st(rxgoal goal (v';';’r:goal)’ (22)
Tigoal
where T,y are sub-goals that are located at some

intersections of channels to help a robot to escape
from local minima.

7  Conclusions and Future Work

This paper presented a theoretical method using
reinforcement leaming for adjusting the weight
parameters in the objective function that was used in
motion planning[3]. This optimized the local
objective function at each time step stochastically to
enable search for the globally optimal trajectory. We
applied Williams’s learning algorithm, episodic
REINFORCE, to derive a learning rule for the weight
parameters in the objective function. Moreover, a
stochastic hill-climbing method can be applied to our
learning rule and our method can deal with
non-Markov  decision processes while the
conventional Q-learning method can be applied only
to Markov decision processes. The learning rule
proposed here was verified by some experiments.

We plan to apply our method to motion planning
problems of multi-robot systems. In a multi-robot
system, interactions between robots can be expressed
as terms in the objective function E(v). If a user
wants to move two robots keeping them close to or
avoiding each other, it is sufficient to introduce an
attractive or repulsion force between robots into the

‘objective function E,(v). This shows the flexibility

that our method can be applied to many scheduling
problems in the wide-range field of engineering.
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Abstract: This paper presents a control scheme for
intelligent motion control of mobile robots under
unstructured environments. Based on environmental
information, which is acquired using external sensors or
given by the upper level, the control scheme performs
autonomous navigation composed of path planning and
tracking control in real time. First, using a simple genetic
algorithm, the path planning module calculates an
obstacle-free path as a sequence of control vectors of
orientation, considering kinematic constraints in steering
control of wheeled mobile robots. Then, the tracking
control module calculates the references for motion
control of the mobile robot using a neural network.
Simulation experiments of path planning under
unstructured environments with several obstacles are
illustrated. An experimental procedure for teaching the
neural network is introduced, and basic characteristics of
the internal and external sensors during straight-line and
circular movements on the floor with black-striped marks
are measured using our experimental small robot to show
the effectiveness of the proposed control scheme.

Keywords: Mobile robots, path planning, genetic
algorithms, path tracking, neural networks, gyro sensors.

1. INTRODUCTION

One of the most fundamental problems in the design and
development of intelligent mobile robots is the navigation
problem under dynamically changing environments.
Generally, the navigation task is composed of path
planning, path-following trajectory generation, and
tracking control. When the robot environment is dynamic,
like as robotic soccer playground, the path planning and
trajectory generation algorithm should be simple and
efficient enough to be used in real time by onboard
computer systems [1], [2].

In this paper, the path planning and the tracking
control are decoupled using a two-level hierarchical
strategy, but integrated considering kinematic constraints

**Department of Mechanical Engineering
Faculty of Engineering
Nagasaki Institute of Applied Science
536 Aba-machi, Nagasaki 851-0193, Japan
E-mail: yasuda@csce.nias.ac.jp

in steering control of nonholonomic two-wheels vehicles.
At the beginning of planning cycle, the control system
finds objects within limited sensing range using a local
vision system, and decides the goal position and
orientation. If there are objects between the robot and its
goal, the path planning module calculates an obstacle-free
path from the current configuration (position and
orientation) to the goal configuration as a set of via-points,
or control vectors of orientation using an efficient genetic
searching algorithm. Then, the tracking control module
performs the steering control for the path tracking.
Conventionally, path tracking is executed only based on
position and velocity errors. Conversely, references for
steering control are produced by learning using a neural
network based on multisensor fusion of internal and
external sensors, and they are recalled using the internal
sensor data when external sensors can not be used.
Preliminary experiments were conducted, where gyro
sensors and infrared photoreflectors are used as internal
and external sensors, respectively.

2. PATH PLANNING USING GENETIC ALGORITHM

A genetic searching algorithm for the path planning with
obstacle avoidance was developed [3]. After finding the
objects, the control system decides the goal position and
orientation of the mobile robot. Then, the path planning
module is activated to generate via-points for a short and
safe path to the goal with stationary obstacle avoidance. In
the genetic algorithm, a path is represented as a set of
vectors of orientation with equal length. The mobile robot
is assumed to move at constant linear velocity. The gene
means the change of orientation of the path; the resultant
path is composed of polygonal lines, where the number of
via-points, or genes, is fixed. To reduce the length of code
of the gene, the change of orientation is restricted to 5
values from 45 deg to -45 deg, considering kinematic
constraints in steering control. The genes and an example
of chromosome are shown in Fig. 1.
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Fig. 1. Genes and example of chromosome.

The fitness value of a chromosome, or planned path,
is defined using the distance parameters from the path to

the goal and obstacles as follows:
N

L i
+ B4
p NL l

fittness = a
N

[=1li + lend

where

L : distance between start position and goal position

[ : distance between I th control point and goal position

1, : distance between N th via-point and goal position

d, : minimum distance between [ th via-point and

obstacles
N : number of genes
X : projection from N th via-point to goal orientation
f : if orientation at N th via-point coincides with goal

orientation, +1;otherwise —1
a, B,y : weighting factors

The fitness value is a weighted sum of the following three
terms: 1) the rate of distance of the planned path to that of
the straight line both to the goal position, 2) the sum of
distance between via-points and the nearest obstacles, and
3) the deviation from the goal orientation (Fig. 2).

f=1 | f=-1
N-th via-point
lend
6
X Goal

Fig. 2. Deviation from goal orientation.

Conventional GA operators such as one-point
crossing over, point mutation, and combined roulette and
elite selection regime, were applied. For real-time

consideration, the total generation number is fixed to a
value required for the convergence of the fitness value.
Path planning is re-initiated before the robot reaches the
final control points to perform smooth movements without
stopping. An example of planned path is illustrated in Fig.
3. The genetic algorithm parameters are listed in Table 1.
The mean processing time for path planning was 0.48 sec
using SunUltra60 (300 MHz UltraSparc Il CPU, with 256
Mbytes of memory).

obstacle

Fig. 3. Example of planned path.
(a=11,8=10,y =5)

Table 1  Genetic algorithm parameters

Population size 80
Generation number 100
Gene number 6
Crossover probability 0.8
Mutation probability 0.05

The relative amounts of the three terms change
according to different environmental conditions. For
satisfactory convergence of the algorithm, the weighting

factor B is set to a relatively large value if the distance

between the start position and the goal position is long,
because the first and third terms are relatively large. On
the other hand, the weighting factors o and Yy are set to
relatively large values if the distance is short. For moving
obstacles, naturally, shorter planning cycle and larger
sensing range are required, and the linear velocity should
be also changed. Furthermore, the  weighting
factor 3 should be set to a relatively large value for safe
path consideration. The weighting factors should be
adjusted according to different environmental conditions
using some neural network.

3. TRACKING CONTROL SCHEME

From the path planning module, current references, or
distance and orientation is given to the tracking control
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module. Then, it calculates the desired control variables
for the motors of the mobile robot using a neural network
at each control cycle. The overall block diagram of the
proposed tracking control scheme is shown in Fig. 4.

&,?S::,igds Desired acceleration
iolance and angular velocity Motor
orientation) | gensor fusion | + Errors | Feedback | power
neural network controller
Mobile
robot

Sensor signals Internal

sensors

Fig. 4. Block diagram of tracking control scheme.

The network inputs are the reference distance and
orientation, and the output signals of internal sensors. As
internal sensors, a piezoelectric vibratory gyroscope
(Tokin CG-16D) and two orthogonally mounted variable
capacitance type linear accelerometers (Analog Devices
ADX1.202) are used, because the odometry using rotary
encoders bring about large errors because of wheel
slippage. The network outputs are the desired output
values of the internal sensors, and their measured values
are fed back into the conventional feedback controller to
calculate manipulated variables, or PWM duty cycle, of
motor power applied to the DC motors of a two-wheels
mobile robot. The tracking controller does not need to
calculate the position and orientation of the mobile robot,
because integral of inertial sensor data induces rather large
eITorS.

In the training phase of the neural network, multiple
internal and external sensors are fused. External sensors
measure the displacement and linear and angular velocities
of the mobile robot, and at the same time internal sensory
information is memorized as the reference for robot
motion control such as steering control. The reference
values are used in path tracking without external sensors
when commands are given in terms of distance and
orientation, or curvature of the path, from the upper level.

An experimental procedure for training the neural
network is designed as follows. The linear and angular
velocities are measured using an infrared sensor system by
moving on the floor with black-striped marks. The
measured velocities are fused with the current outputs of
the internal sensors, and the network is trained using the
back propagation method to produce desired outputs. The
proposed control software was implemented on a
microcontroller-based control system (Hitachi 16MHz
H8-3048 CPU) under a real-time OS, with the interface
circuits for the internal and external sensors as shown in
Fig. 5.

4. PRELIMINARY EXPERIMENTS

Our experimental mobile robot is two independently

driving wheels type. A DC motor is geared to each wheel,
and a PWM drive is used to control power applied to the
motors. The wheel diameter is 65 mm, and the wheel
separation distance is 160 mm. Fig. 6 sketches the
experimental set up, and Fig. 7 shows the mobile robot
moving on the floor with black-striped marks.

| upper level controller |

Host Interface (HIF)
HB CPU core

u \\\ Q\\\\
wi \

N ROM/RAM \&\‘\%

buffer f&
acceleration gyro line
sensor sensor sensor

Fig. 5. Hardware configuration of tracking
control system.

oo I/M/M

Black line for
line tracing
P Infrared photo reflector
< for line tracing
E§
o & < Gyro sensor
22
= ®
£
Gz
~x O
3£
o =

Infrared photo reflectors for
detecting black-striped marks

Fig. 6. Sketch of experimental set up.

Fig. 7. Circular movement on the floor with

H
0= 5 10 15
==Width of black-striped marks [mm]

black-striped marks.
The mobile robot detects black-striped marks with
equal spaces of 10 mm during line tracing using dedicated
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OMRON EE-SY121 infrared photo reflectors. The
velocities are measured by the input capture module of the
microcontroller. Fig. 8 shows the relationship between
duty cycle and measured linear velocity. The angular
velocity can be measured using the difference of capture
timing intervals from two photo reflectors. Table 2 shows
the measurements during the straight-line and curved-line
movements, where the linear velocity is measured using
the photo reflectors. The theoretical values of gyro sensor
measurement, which are calculated from the measured
linear velocity, the radius of curvature of the circle and the
electric specifications of the sensor, are in good agreement
with the measured ones, although the accuracy of the gyro
sensor was =+ 20 %.

07
06 |—
05 |

0.4
03 p— = O ! —
0.2
01 |-—- —
0.0

Velocity [m/s]

0 20 40 60 80

Duty cycle [%] lr't‘"
V2]

100

Fig. 8. Relationship between duty cycle and measured
linear velocity: vl= human eye measurement,
v2= measurement by the external sensors.

Table 2 Measurements during moving
on black-striped marks

Linear velocity | Gyro sensor
[m/s] output [V]
Straight-line 0.379 2.55
Curved-line 0.376 2.39
(clockwise)
Curved-line 0.383 2.73
(counterclockwise)

(PWM period = 10 ms; PWM duty cycle = 50 %; circle
radius = 0.5 m; space between marks = 10 mm)

Fig. 9 shows the values of capture timing interval
measured by the input capture module during moving at
constant speed on black-striped marks with different
widths. From the experimental results, it is confirmed that
the infrared sensor system can measure widths of
black-striped marks accurately, and the’ internal sensor
system can be used to generate the references for motion
control.

Fig. 9. Capture timing interval during moving on
black-striped marks with different widths.

5. CONCLUSIONS

An integrated path planning and steering control scheme
was proposed for autonomous navigation of intelligent
mobile robots. The control scheme is simple and efficient
enough to be used in real time. Straight-line and circular
movements on black-striped marks are used for teaching
the neural network, where the internal sensors are fused
with the external sensors. The experimental results show
the effectiveness of the proposed measurement system
using the infrared photo reflectors and the gyro sensor.
The whole control scheme is now being implemented on
the microcontroller-based architecture.
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Abstract

A new mathematical concept, named Pseudo In-
formation Measure is introduced and some new for-
mulations for sensor data fusion in mobile robotic map
building are obtained. In some map building experi-
ments the 8 proximity values of the infra red sensors
of a Khepera robot are fed into the inputs of a neural
network. The output of the network, is an occupancy
probability value of a cell in the map which is fused
with currently available probability value of the as-
sociated cell in a global map, to improve the global
map of the environment. The fusion is done, by us-
ing Bayesian and our new fusion formulas. Some path
planning experiments using a modified version of A*
algorithm have been done. The resulting paths show
that the maps, generated by our new fusion formula-
tion can be more informative and lead to shorter or
safer paths in an unknown environment for the robot
to navigate.

Key words: Khepera, Environment Mapping, Per-
ception, Sensor Data Fusion, Bayesian Rule of Com-
bination

1 Introduction

Since mobile robots are typically equipped with sev-
eral sensors of different modalities, they are suitable
benchmarks to test the revenue of any sensor fusion
method. For an autonomous mobile robot to operate
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in unknown environments, two main capabilities are
required: the ability to reach a target while avoiding
the obstacles it might find on the way, and the ability
to build environment models from sensor observations.
The sensory information, after some neural prepro-
cessing, are some occupancy probability values. They
are noisy, redundant and complement. These values
can be integrated, by using Bayesian fusion technique
({1]), to give more certain and less noisy values for
the cells in the map. In this research work we have
improved the Bayesian formula by introducing a new
concept and obtaining new formulas for effective fusion
of sensory data.

1.1 Occupancy Grids and Bayesian Fusion

In occupancy grids framework, the environment
area is divided into many small square cells. For each
cell of the map two states are possible, either it is
occupied or it is empty. The map is generated by mea-
suring probability values for each cell in it i.e. by
judging about the state of the cell. In Bayesian ap-
proach, the range finder sensor is modeled by some
conditional distribution P[r|z] where z & r are the ac-
tual and the measured distances, respectively ([1]). If
multiple measurements are available (obtained by sev-
eral sensors or by a single sensor but in several time
instances), then by Bayesian rule in the probability
theory, the map is improved. Practically it can be as-
sumed that the sensors are operating independently.
In such a case, *he fusion formula is simplified as be-
low:

PIX.Pz
P = 1
PAxP+(1-P)x(1-P) )
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where

P, = P[s(C;) = Occ.|{r}]

Py = P[s(C;) = Occ|riz1]

{r+} = all of the measurements up to time ¢
r¢+1 = the measurement at time ¢ + 1

2 A New and Useful Concept

We tried to find a quantity, that is increased while
the fusion takes place by (1). It can be interpreted as
some quantitative description of the information ex-
isting in the proposition C; is occupied. If a function,
INFO(P) is defined as below:

INFO(P) = log(P) — log(1 - P) (2)

then, combination of (2) and (1) simply results the
following desired property for INFO(P):

INFO(P) = INFO(P;) + INFO(P) (3)
Figure 1 shows the mathematical shape of the func-

INFO(P)

0.5

[=]
R Rt e LR

Figure 1: General mathematical shape of a pseudo-
information function

tion INFO(P). As P goes farther away from % the
value of |INFO(P)| increases because the proposition
becomes more informative. But in order to distinguish
between the propositions that are near to be false
and the ones that are near to be correct, the func-
tion INFO(P) is symmetrically negative in the former
case and positive in the latter. We tried to extend
this concept to a more general case. Actually there
are some properties that if every other function sat-
isfies them, then it can be accepted as a quantitative

measurement function for the information existing in
a proposition. We nominate such functions as pseudo
information measure functions and will use the sym-
bol PINFO(P) for them. The desired properties are
as below:

1- 1t is defined on [0, 1]

2- It is symmetric around % and zero at % So, it can -
be defined as

PINFO(P) = J(1 — P) — J(P) (4)

Clearly in the case of (2) the function J(P) is — log(P).
3- It must satisfy the following limits:

Limp_,;-PINFO(P) = +00 °

and it is sufficient for the function J(P) to satisfy the
following limits:

Limp_o+J(P) = £oo (6)
Limp_1-|J(P)] < o0

4- It must be an increasing/decreasing (vice versa
J(P) must be a decreasing/increasing) function.

2.1 Data Fusion Using Pseudo Information
Measure

Defining a fusion formula is straightforward after
the definition of a pseudo information function. Two
sources of information that have been processed and
then expressed as two probability values for some
proposition, are fused in such a way that the pseudo in-
formation measure for the resulting probability is the
algebraic sum of the values associated with the two
probabilities. It is the same as (3) rewritten as:

PINFO(P) = PINFO(P,) + PINFO(P,)  (7)

Hereby, there are six possible definitions for pseudo
information measure function:

Ji(P) = —log(P) L(P)=%  Js(P)=pir
J4(P) = pz Js(P) = g Jo(P) = log(HF

Figure 2 gives a comparative representation for the
mathematical shapes of the six pseudo information
measure functions created by the functions Ji(.) ~
Js(.). It compares the behaviour of the pseudo infor-
mation values while |P — 1| increases.  Ji(.) is the
function which leads to Bayesian fusion formula (1).
It is apparent that in Jy(.) and J3(.) and Jy(.), we
have tried to use fractional functions instead of the
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Figure 2: Comparative mathematical shapes of the 6
pseudo-information functions created by 6 functions

Ji()-Js(.).

logarithmic one in Ji(.), and in Js(.) and Js(.), the
same trial happened for applying exponential and an-
other logarithmic functions. By applying (4) and (7),
one can easily obtain fusion formulas for every defini-
tion of pseudo information. In some cases, an explicit
formula can be directly calculated. For example, in
the case of applying J,(.) to calculate the pseudo in-
formation measure values, the following fusion explicit
formula is attained:

P z2+\/74 if :U#O
L if z=0
2

wherex = 1 — 1L 4 1

Rt P , or in the case of ap-
plying the exponential function of J5(.) the following

formula is resulted:

p= lOg (a:(e+1)+\/m2(e—1)2+4e> )

(2(x+1))

where £ =Js(1 — P1) - J5(Py) + Js5(1 - P;) — Js(P). But in
many cases, there is no direct formula for doing fusion
and an implicit algebraic equation must be solved. For
example in the case of Jg(.), the following equation
must be solved:

2pP2_p8 _ 2P —pd + 2P2
1-P-P24+P% = 1-P— P2+P3 1-P,— P2+P3

(10)

Finally, as figure 2 shows, the main difference between
the J(.) functions, is in their behaviour when |P — 1|
increases. Actually, it can be proved that:

I6(P)] < [J1(P)] < |J2(P)] 2 |J5(P)] < |J3(P)] < |Ja(P)|

and it shows that the pseudo information measure,
calculated by using Js(.), behaves more softly with

(8)

800
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Figure 3: The exact (ideal) map of the navigation en-
vironment.

low and high probability values (associated with more
informative propositions) and the inverse second or-
der function J4(.), behaves roughly about informative
propositions and has not been considered in the com-
parative implementation in this research work.

3 Map Building Experiments

Khepera miniature mobile robot, was used to do
some map building experiments. In figure 3 the ex-
ploration environment is depicted. An MLP neural
network was supervised for map building. The inputs
of the network are 8 proximity values, provided by
Khepera infrared sensors, and the local coordinates of
a cell in the occupancy grids map around the robot.
The output of the network is one probability value,
judging about the state of the cell to be occupied or
empty. This probability value is fused with the associ-
ated occupancy probability value of the same cell in a
global map of the environment and finally the result-
ing probability is applied to improve the global map.

In other words, during exploration, Khepera makes
a local map of occupancy probabilities of the cells
around itself, in each location where its infrared sen-
sors data are read. These local maps are integrated
with global map and it improves gradually.

Four map building experiments were done, by us-
ing Bayesian fusion (1) and three of pseudo informa-
tion fusion formulas (8) and (9) and (10). In figures
4 and 5 the four resulting maps of the environment
are shown. It is observed that the maps resulted from
pseudo information fusion formulas are more informa-
tive and more useful for path planning purposes. Ac-
tually their characteristics depends on the pseudo in-
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Figure 4: The global maps of the environment, created
using Bayesian fusion (top) and pseudo information
measure fusion by Ja(P) (bottom).

formation measure function, selected for fusion. For
example, compared to Bayesian map, the maps gen-
erated by Jo(P) and J5(P) are more clear but less
safe (i.e. with less area marked to be occupied) and
the map generated by Jg(P) seems to be not as clear
as the others but more safe. Some path planning
experiments, using an improved version of A* algo-
rithm, were done using the generated maps. They
show that the maps generated by J2(P) and Js(P),
lead to shorter paths (compared to the case of using
Bayesian map for path planning), and the map gener-
ated by Jg(P), leads to safer paths.

4 Conclusion

In this research work, a new method for sensor fu-
sion in map building process for mobile robots is in-
troduced. Because of the large variety of possible def-
initions, many mathematical formulations are possi-

200 400 600 800

800
700 §
600
500
400
300 &
200 |

100

200 400 600 800

Figure 5: The global maps of the environment, created
using pseudo information measure fusion by Js(P)
(top) and by Js(P) (bottom).

ble. Map building and path planning implementation
results show that by choosing the the pseudo infor-
mation function, we can control the existing trade off
between the traveling time (path length) and safety
(path distance to obstacles).
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1. Abstract

Today, in Japan, the aging society that will
happen to the future becomes an important
problem. To do welfare the old persons who
increasing every year that needs. But, to do
welfare  the old persons needs the hand
and the labor. Therefore, the hand and the
labor can be reduced by using the robot for
welfare. I think of the aging society to the
future and using Welfare Robot Prototype of
the two wheels drive, I controlled in the
running. It makes programming the running
control of me to run safely and moreover
smoothly and it mistakes it in the attempt
from the gotten data. Then, the main system
of Welfare Robot Prototype that was used by
the running experiment this time is shown
below.

2. Introduction

The Welfare Robot Prototype is a mobile
robot has four wheels; two wheels, located
along the central axis, are driven wheels, and
the other two are auxiliary wheels to support
the body of the mobile vehicle. A pair of Direct
Current (DC) motors turns the driven wheels,
such that the speeds of the two DC motors
(right and left) may be changed independently,
via the Input-and/or-output (I/0) card,
Digital-to-Analog (D/A) converter, and a

Pulse-width-Modulation (PWM) controller card.

The relative position or motion of each on the
shafts. Power is supplied by DC batteries
installed in the body. There are 6 ultra sonic
sensors facing forward and rear for using in
obstacle detection, which may be read via the

input ports on the I/O card. Simple outputs
may be obtained via 4 Lights Emitting Diodes
(LEDs) mounted in the head For more
complex interaction, the robot has a touch
panel Liquid Crystal Display (LCD) monitor.
The robot has two color Charge Coupled Device
(CCD) cameras mounted on its head. Each
camera is capable of independent pan and title
movement. The head can be rotated right and
left using a stepping motor. Connections also
exist for speaker output and microphone
throughout. To control the robot, there are two
personal Computers (PCs) built into mentioned
earlier (-0, motor driven, frame grabber, and
counter cards), and the serial ports (for camera
control). The PCs have Windows 98, Microsoft
Visual Studio (MSVS) development software,
and hardware driver software installed. The
two PCs may communication via Ethernet.
Looking at the robot from the rear, the two PCs
can be seen with their various connections. The
proposed division of tasks between these two
machines is as shown in Fig.1.1.

F@\ LED

Ies N CCD Camera
~ Touch Panel
i |
J PC
DC Motor

_’|/—7 Ultrasonic Sensor
‘ i >

@) . Wheel

[T L

Fig.1.1 The Welfare Robot Prototype
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3. Robot Wheel Geometry

Networked messages will carry information
about items seen (or head) from one PC (Which
has access to the frame grabber and sound
card) to the PC responsible for controlling
hardware. In order to interpret any
information retrieved from the camera image,
it is necessary to know the basic geometry of
the robot. Robot wheel geometry, and motor
equations are displayed in Figure 1.2.

©R Position(x,y, ¢)

[
Wheel Speed o
y Wheel diameter
d=100(mm)
®L
Wheel distance
X
! D=400(mm)

¢ = n (oror) d / D
x = 0.5 (wrtor) =n dsin(¢)
y 0.5 (witwr) 7 dcos(¢)

Fig. 1.2 Robot Motion

The position of the robot at any time may be
expressed as a pair of co-ordinates ( x,y) and an
orientation angle (¢). The rate at which the
position (x,5 ¢) changes is dependent on the
sum and difference of the rotational speeds of
the left. right wheels (w1, ® ). The actual
speed of the left and right wheels at any time
may be estimated by either counting or timing
the pulse from the left and right micro-sensors
which detect the slots in the encoder disks as
shown below:

2r P

xS (D
for an encoder with n slots, where P pulse
counted in a sampling time of s seconds,
w= E X —1- X l (2

n S l
for an encoder with n slots, where I intervals of
s seconds counted between pulses. The motors
are controlled by switching the on/0ff
forward/reverse relays, and by sending a
number d between 0 and 255 to the PWM
controller via the 7O port and A~D . The

speed of the motor (in either direction) under

no-load is linearly related to the number. The

empirically estimated relation is:
P=s(235-12.3Xd) (3

There is some slight difference between the
motors that is changing over time and that this
relation will change with loading. The time
constant of the motors has been experimentally
determined from non load step response, as 20
~30ms. Practically this means that when a
speed command is sent, the robot will take
approximately 100ms to achieve that speed.

4. System of Camera
The location of any object in a single camera
image is related to its position in the “real”
world. The “error” is the vertical and horizontal
offset of object image, from the center of camera

image as shown in Fig.1.3.

Viewing angle
45 degrees

Max distance

Min distance

i

Left camera axis is displaced from

robot central axis by 0.08(m)

= 30pixel offset at min distance

Image size
160 by 120

error y

error x
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Height
1.07(dy)
| Distance 0.56 1.07 2.05
mounting angle tilt viewing angle
30 degrees 15 degrees 35 degrees
Fig. 1.3 Robot Geometry

This figure shows only the left camera
geometry, relating object position to error, pixel
offset and camera focal length. The distance to
object and height of object and angle to object
are not uniquely specified by a single camera
image. If similar calculations may be made for
the right camera, the right camera, the
information from the two cameras may be used
to uniquely determine these quantities.

The cameras and capture card are NTSC
standard. NTSC frame rate is slightly less than
30 frames / second. Therefore, position
information cannot be obtained from the image
faster than this rate.

The both cameras provide color images. In
order to understand the data that is obtained
from the camera capture card, it is necessary to
introduce the concepts of the pixel.and of color
space. The pixel is the smallest region that the
image is sub-divided into. We can consider an
image to be an array of pixels. Color space
concerns the way in which a color can be
represented or measured. It is useful to image
color space as a co-ordinate system in which the
colors are located, similar to the way that robot
position can be represented in the x,y; ¢ system.
Depending on which color space system is used,
the amount of bytes required to represent a
pixel’s color will vary.

For each pixel, the color space information is
made available from the capture card. This
information is stored sequentially, row by row,

starting from the top of the image. Regardless
of the number of bytes used to represent the
color the data provided for a signal row will
always be a multiple of 4, if the row
information ends before a 4 bytes boundary
where the next row starts.

The color spaces typically used are Red, Green,
Blue (RGB) orthogonal color space. Any color
may be considered as a mix of three primary
colors red, green and blue. This color space
attempts to quantify how much of each primary
color (between D and maximum), is in the color
observed.

Hue, Saturation, Value (HSV) cylindrical
color space. A color is defined by its hue which
is expressed as an angle. The saturation
indicates the purity of the color. The brightness
or darkness of the color is the value.
Luminance, Chrominance (YUV) orthogonal
colors space. The luminance Y of a color is the
amount of brightness it contains. This is
equivalent to the gray scale value of the color.
The chrominance U,V may defined in many
different ways, but reflect the proportions of
two reference colors in the final color.

The cameras have a viewing angle of 45°
about the center, and a pan range of £30° .
This when combined with the head rotation
range of +100° gives the full viewing area as
+152.5° .

5. Motion of this Robot’s Head

The head angle may be changed by
instructing the motor card to send a specified
number of pulses to the head stepping motor.
The frequency with which the pulses are
delivered varies in accordance with the
specified motor acceleration parameters. In
this way smooth motion can be achieved.
Alternatively, the speed of a continuous motion
may be specified and changed as the head
moves. To control the camera pan angle (or any
of the other camera parameters such as tilt,
filtering etc) the SONY VISCA serial protocol
may be employed, across the cable from the
camera connected to the PC serial port. This is
an asynchronous protocol meaning that
messages may be sent at any time. A message
consists of a header (indicates who sent the
message, what type of message), message and
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terminator. A message sent from the computer
that meets the specified format will be
acknowledged, and answered if it is a query, or
executed if it is a command. In the case of
commands, a second acknowledgement is sent
when execution is completed.

Network communication may also be
implemented on an asynchronous basis,
between computers. In order to do so, one
computer must act as the server, and the other
as the client. At startup, the client.request that
the server assign it a socket, across which they
send messages to each other. While it is not
necessary to have a header and terminator on
these messages, such things facilitate relative
communication.

As well as visual information, the network
will also have to carry voice command or sound
information between the two computers. While
second is based time as is the camera image, it
must be analyzed in a different manner as no
signal instant in time may be considered
separately from all the others (unlike for the
camera where we can consider a signal image).
Sound is a waveform, and as such may be
represented by amplitude through time,
frequency spectrum, or any waveform
characteristic, for example the Discrete Fourier
Transform (DFT).

In Addition to using sound to interrupt voice
commands, it is also used to detect obstacles.
The ultrasonic sensors consist of a sender and
receiver. Sound waves from the sender, bounce
off objects and are detected on reflection. The
sensors have a narrow beam angle, and their
detection distance can be adjusted, by adjusting
the sensitivity of the receiver.

The many parts of the robot need to be
controlled simultaneously. In order to do so
effectively under the Windows 98 operating
system, it is necessary to use multiple
processes and multiple threads. A process can
split its work between threads that it starts
and can subsequently control. Multiple threads
can have access to the same memory space,
Multiple processes each have their own
memory and code space, and are used for
unrelated tasks. They have no access to shared
memory space with another process, without
some explicit definition as such.

This completed the basic concepts involved in
understanding and controlling the robot

6. Conclusions

To the Future, we will study to control the
rotational numbers. The speed is the optimal to
make run safely and smoothly must be done.

Next, we will do the pursuit control what
runs by chasing the color tape that was pasted
to the floor by two CCD cameras what has
loaded into the robot. To suppress an error with
the goal one, when the robot is bending, a lot of
problems to have removed a line mainly, and so
on, seem to occur about the curve.

We search into the cause and think that must
solve one by one.
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Abstract

The Globally Coupled Map Lattice (GCML) is
one of the basic model of the intelligence activity.
We report that, in its so-called turbulent regime,
periodic windows of the element maps foliate and
systematically control the dynamics of the model.
We have found various cluster attractors. In one
type of them, the maps split into several almost
equally populated clusters and the clusters mutual-
ly oscillate with a period p that is the same with the
number ‘of clusters (c). We name them as
maximally symmetric cluster attractors (MSCA’s).
The most outstanding is the p3c3 MSCA and its
bifurcate. The MSCA is proved to be linearly
stable by Lyapunov analysis. There are also cluster
attractors with p>c. They come out in sequences
with increasing coupling. The formation of the
clustors in the very weakly coupled chaotic system
may suggest a new form of an intelligence activity.

1. Introduction

We have recently found that, in the so-called
turbulent regime of the GCML, a variety of amaz-
ing periodic cluster attractors are formed even
though the coupling between the element maps is
set to be very small [1]. In this note we review our
work and substantiate it by ample examples. For a
pioneering work of this model, see e.g. Ref. [2].

The simplest GCMI—a homogeneous one—is
defined by

x,(t+ 1) =(1~-¢)f,(x,(1) + €h(2), ©)
ht)=3 f,(x;(t)/N, @

with f (x) =1-ax®. All maps are endowed with a
common high nonlineatity and evolve under an
averaging interaction via their mean field A(r) with
a coupling & The formation of clusters via
synchronization in this model is well studied for
the large coupling region and the switch between

coded attractors has been investigated in detail.
For a recent progress, see [3]. On the other hand,
in the small coupling (so called turbulent)
region, maps have been regarded to evolve almost
randomly under some hidden-coherence. Our new
observations of various cluster formation in this
region indicate that a pattern-recognition in a
complex system is possible even if a highly
random system is set with a very weak coupling.

We establish the linear stability of the cluster at-
tractors formed in the turbulent regime. We in
particular derive algebraically the ¢ value for the
formation of the MSCA.

2. Foliation of the Element Map Windows
In a MSCA configuration the mean field must

be time-independent due to a high symmetry in
the cluster populations. Thus (1) becomes

x(t+1)=(1-&)f,(x,(t)) +h*, ©)
with a constant external field A*. The evolution
equation acts on all the maps commonly in (1) and
it becomes furthermore independent of time in
(2). We can cast this unique equation into a stan-

dard logistic map with a reduced nonlinear pa-
rameter p,

yit+ 1) =1=b(y, (1)), )
by a linear scale transformation

yi®)y=(0-e+en" )" x,(1), ®)
and the reduction factor of nonlinearity is

rebla=(1-e)(1-e(1-h")). 6)
The clusters of MSCA oscillate mutually around

the fixed average h*. Their orbits are the same
each other modulo time translation and propor-
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tional to the orbit of a logistic map with the
nonlinearity b reduced by a factor in (6). Thus it
must hold that

yi=(-e+eh’)"h, @)

with y* being the time-average of the logistic
map at b. Equation (6) and (7) are the key to find
how a periodic window of an element map foliates
and produces a MSCA of GCML. On one hand
there is a periodic window at b with y*(b). On
the other hand there is a2 MSCA produced in
GCML at g, ¢ with a constant mean field A*. The
nonlinearity a of the latter element map is re-
duced to b by the averaging interaction. For each
reduction factor r, we can work out aand ¢ that
corresponds to b by eliminating h*,

a®(ry=b/r, @®)
eV (P =1-ry (b)/2—r(d-y B) +(ry" (®)/2)*.

Now by varying r, (8) gives a curve of balance on
the a,e-plane, which emanates from the point
(b,0). We call this curve as a foliation curve of a
window dynamics. If a MSCA with a period p is to
be produced, it must be produce in a GCML with the
parameter a, € set on the curve of the period p win-
dow. At some stronger coupling at given a, the maps
should be more tightly bunched and we may expect

a
1.80

*% 1.85

1.90

o || oo3|] DC B 0.12
a 5

Fig.1 €

2.00

p > c type attractors.

Let us check if this prediction works. For this
purpose we consider the mean squared deviation

(MSD) of the mean field in time
(Oh); =T, (h(D) =) /T, )

as an indicator of the cluster formation. A MSCA
will yield very low MSD due to its high symmetry
in cluster populations, while the p> ¢ attractors

will give remarkable peaks due to the lack of one
or more clusters. In Fig.1 each panel is set at a
fixed ¢ and MSD is shown as a function of ¢ for
N=10* GCML. Six prominent logistic widows
(p=1,5,17,3,5,4with increasing b —decreasing ¢
at the same a) are selected and the family of folia-
tion curves of these windows is shown underneath
the panels. The four curves A-D for each window
respectively come from the point A below the
threshold, the threshold B, the first bifurcation
point in the window C, and the closing point D.
The shaded zones in each panel are then the ex-
pected place of the manifestation of prominent
windows. At each zone, a MSD valley due to
MSCA should appear in the lower ¢ side and a.
MSD peak by p > ¢ cluster attractors at the nearby

higher ¢. We find that the prediction works with
almost no failure in all panels and in all six win-
dows.

Interestingly, the MSD curve in each panel has
an ample amount of peaks and valleys at the
smaller ¢ region (the left), but only a few broad
ones at the larger ¢. This is naturally understood as
follows. In a way, each panel is a screen which dis-
plays the windows of the single logistic map by using
a macroscopic coherent state of GCML. But the
panels are inclined; a smaller ¢ implies less reduc-

tion, i.e. r=1. Hence the left sensitively displays

the sharp peak-valley structure induced by cluster
attractors. The right, on the other hand, can reflect
only the accumulation of the periodicity remnants
from nearby windows, being dominated by the
prominent one at its respective zone.

We have checked that, at all the MSD wvalleys
with large nonlinearity reduction, the h(r) distribu-
tion is Gaussian with the MSD sizably larger than
the value dictated by the law of large numbers—
the so-called hidden cohetrence [2]. We therefore
conjecture that the hidden coherence is due to a de-
synchronized MSCA state [1].
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3. Lyapunov Stability Analysis

The Lyapunov analysis can be applied to both
diverging and converging system orbits and it can
detect the possible coexistence of multifold finial
states. It tracks the expansion rate of a shift vector
under the linearized GCML equation

Ox. 1)=- — —8— ) )
x; (t+1)=-2a[(1 e+N)x,(t)§x,(t) (10)

+%§ x; (8)ox ()],
and yield the maximum exponent A ma.

First let us investigate the outstanding period
three cluster attractors. In Fig.2 we compate A max
and the MSD. N=10¢, 4 =1.90.

We find three salient structures.

(1) MSCA*. A seagull structure (¢=0.032-0.037) in
both. For the most stable events, the MSD is also the
least. By a direct observation of the orbits, we find
all events are bifurcated MSCA. This can be un-
derstood as follows. The maps and the mean field
together are a bootstrap system, see (1). That is,
generally the mean field is not a simple external
source and the fluctuation in it will be reflected to
the fluctuation of the maps. The high mean field
fluctuation would lead to the instability of the sys-
tem. An exception is the MSCA. Here the mean
field is constant and the system protects itself
from instability which is otherwise amplified by
the bootstrap. The MSCA is the configuration with
which the GCML stabilizes itself with minimum
Sfluctuation of the mean field.

(2) p3c3 MSCA. The first low band (0.037-0.041).
The negative A ma and the low MSD.

(3) p3c2 cluster attractor. The second low band
(0.041-0.051). Here, the MSD is extremely high
because of a lack of one cluster to minimize the
fluctuation. For the bulk of events we find A may is
small but positive. For a system with low degrees

of freedom, the positive A max implies chaos. But

here, even with a positive A ma, the maps always
form stable p3c2 state. There is actually no contra-
diction. The global motion of the clusters is peti-
odic, but, inside each cluster, maps are evolving
randomly. The Lyapunov exponent is sensitive to
the microscopic motion and hence yields positive
value. But for a larger deviation, nonlinear terms
can become relevant and pull back the map. This
type of map motion—microscopically chaotic but
macroscopically in the periodic clusters—may be
called as confined chaos.

Note that in Fig.2 there are also states with
high rate mixing of maps (denoted as M), which
coexist with the cluster attractors at the same &

0.8 [
AL }
0.6

0.4]
02f

Let us predict the position of the salient cusp.
For a cluster attractor configuration, there occurs
a high degeneracy of eigenvalues of the linear sta-
bility matrix. For each cluster (I) with N, maps,

there is a single eigenvalue with (N,-1)-fold de-

generacy. It is
AD =(=2a(1-g))’ 17, X!, )

where X’denotes the cluster orbit. It is responsi-
ble for the stability of a map in that cluster. The
altogether c eigenvalues of this type take care of
Z_ (N, -1)=N —c degrees of freedom of maps.

The other ¢ eigenvalues are responsible for the
stability of the cluster orbits. For a MSCA the
product of X/ over the period p is common to J.

Therefore the spectrum consists of a highly de-

generate eigenvalue A with (N —¢) -fold degener-

acy and additional ¢ non-degenerate eigenvalues.
Now, the crucial point. The orbit X/ of a

MSCA cluster at a, ¢ (common to all /) is nothing
but the orbit of a single map y, at b modulo a

scale factor (see (5)). Thus, A for MSCA agrees with
the Lyapunov exponent of a single map at b ;

A= (=2b)" 10, y,. (12)

This becomes zero when one of the orbit points y, 's

becomes zero, that is, when b is a solution of
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(f,)?(0)=0. As for the other c eigenvalues, they

agree with A within small correction of order
g/c[1]. That is, if Avae =log( A D/ p is - oo, they are
all extremely small, approximately log(g/c) . For
p6e6 cusp, the relevant solution bsis 1.77289. The
foliation curve for this b reaches thea =1.90 panel
at £,=0.0352. This is precisely the MSCA* cusp
position. The predicted curve for A mx around
the cusp (the dashed line) is also in good agree-
ment with the data.

Now let us investigate the cluster attractors with
higher periodicities.

P5 and p4 cluster attractors

In Fig.3a we show the same with Fig.2 for the
foliation of the p5 window—the sequence of
MSCA*—¢5 =4 —3—2 sampled at a =1.64 (left).
Fig.3b is for p4; MSCA*—cd —¢3—>2 at a=1.95.
Both for N=10% Overall agreement with the p3
case can be seen clearly—we observe the MSCA
cusps in D-B and p > ¢ clusters in B-A. Algebrai-
cally we obtain £,10=1.62943 and 45=1.94178. The
predicted MSCA* cusp positions from our folia-
tion equations are &,,,=0.00397 and £,=0.00194
—in agreement with the observed ones.

In Fig.4 we show the composition of p>c¢
attractors obtained by a gap analysis of 103 random
events at each ¢ for each of p5 and p4. With in-
creasing ¢, the ¢ sequentially decreases with in-
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termediate coexisting phases of p > ¢ clusters and

random maps. The MSCA dynamics dominates
inside the window (above the dashed line B) while
the p > ¢ clusters are formed in the intermittent
region below the window (the region of the higher
reduction by ¢).
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4. Conclusion

The newly found stable self-organized MSCA’s
(and its bifurcates) with a minimum fluctuation are
the basic states of maps in the turbulent GCML.
They may be regarded as counter parts of the
ordered vacuum in the field theory at the spontane-
ously broken symmetry phase. The p > ¢ attractors

are curious deformed states at slightly higher
coupling. Their periodic orbits are almost the same
with the MSCA but due to the lack of some clusters
the MSD is maximized. Even when the Lyapunov
exponent is positive, the maps are macroscopically
confined in clusters stably.

The foliation has been also found independently
by two other groups [4] but neither the stability nor
the p > ¢ attractors were discussed by them.
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Abstract

In this paper we propose an application of a neu-
ral network to a decision support system. To estimate
an unknown nonlinear model, the probabilistic neural
network is incorporated into the proposed system. We
further propose the survival of the fittest type learn-
ing rule which can be applied to the update rule of
the probabilistic neural network. Our model is an
algorithm which extends the deterministic annealing
Expectation Maximization algorithm. It can execute
faster learning and avoid over-fitting rather than the
usual probabilistic neural network. The effectiveness
of the decision support system using such learning rule
is shown for the sampling data.

1 Introduction

The multiple regression is one of method to show
the relationship between the explained variable and
some explanatory variables. It has however the pos-
sibility that a large residual is left, because of such
modelling assuming the linear transformation from the
explanatory variables to the explained variable. Fur-
thermore from the results of linear analysis, we can
only detect the general tendencies. Compared with
the linear modelling, the nonlinear modelling can not
only reduce the residual but also advise a detailed poli-
cies in response to a situation. Such features are very
important.

In this paper, we propose a decision support sys-
tem. We apply a neural network which can estimate
an unknown nonlinear model by learning to the pro-
posed system. Recently, it is known that the neural
networks are available for the pattern recognition, the
signal processing and so on[1], various neural network
models have been proposed according to cases. For
our purpose, we select the probabilistic neural net-
work[2] which can reconstruct the joint probability
density function of the explained variable and some

explanatory variables. On constructing our system,
we improve the probabilistic neural network by con-
sidering the survival of the fittest type learning rule[3].
The neural networks applying our proposed learning
rule can execute faster learning and avoid the over-
fitting.

2 Proposed System
2. 1 Structure

In this study we use a Probabilistic Neural Net-
work (PNN)[2,4] for proposed decision support sys-
tem. PNN is one of NN which estimates an unknown
probability density function p(z) by summing up many
outputs of Radial Basis Function (RBF). A normal
probability density function is used for the RBF. Fig-
ure 1 shows the structure of PNN which consists of
the K input neuron and 1 output neuron.

Figure 1 The structure of the PNN

An input vector z, can be described by z! =
[xTyT]eRWV+M) where x, = [z},22,---,z]]T € RN
and y,=[yl,v2, - yM]Te RM. Supposing that the
relation between the vector x, and y, in the RBF of
the input neuron

Nv+m)(Zs, ¢r) = Ny (X6, 0%) X Nu(ys, %) (1)

where

1
N(N—HU)(ZS, ¢k) = (27T)(N+1w)/2“2k1|1/2
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T shows a transpose of matrix, my is a mean vec-
tor [mi,m?2,-- o mNTMT e RINEM) and B0t €
RIN+M %) xRIN+M) g an inverse matrix of the covarl—
ance matrix 3, whose ijth component is o) (4,j =
1,2, -+, N+ M). This means that each input neuron
can consist of cells which receive x, and cells which
receive ys.

This result say that we can consider the right out-
put neuron group which output Ri; = Er[zi|z, : 0],

(i=1,2,---,N; j=1,2,---,M) and the left output
neuron group which output LJ, = EL[ ! l:c : 0] where
ZI = [xl "71'; 1,‘7";—"1 Ts >ysa ,y ) ’yé\/{]T €

§R(N+M 1) (See Figure 2).

Figure 2 The structure of the proposed system

2. 2 Dynamics

In figure 2 w denotes the set {wi,ws,"- Wi}, @
denotes the set {¢1, P2, -, ¢k} and 6 the set {w,¢}.
For example the output which belong to the right out-
put neuron group are given by

Er[zilz, : 0] = / z;p(zi|z' : 0)dz;
R
K .
= > on(zl)mj, (3)
k=1
where
N, B /, 2z
an(z)) = W N(N+M 1)(Zs ¢**) 4)

K N
D ket wkN(N-i—M—l)(zlsa ¢%x)

¢% means a set of the parameters concerned with z.
The output which belong to the left output neuron
group can be also obtained by the similar way.

The kth input neuron outputs for the input vector
Zs

£(zs, wi, dr) = WeN(n+M)(Zs, Pk)- (5)

The output value &(z,,wk, k) is transmitted to the
central output neuron, and central output neuron calu-

culates

p(zsvwaqs) ZE Zk>¢k (6)

Zk 1 Wk g

2. 3 Learning Rules

The parameter ¢ can be derived by maximizing the
log-likelihood function

L(zs, w, ¢) = log p(2s, W, §). (M

The each estimatee value of w, my and X, can
be obtained by the iterative calculation derived by
the Deterministic Annealing Expectation Maximiza-
tion (DAEM) algorithm[5] which extends the EM al-
gorithm[6]

S

w ™ = Z ®)
S (t)

hy'(zs
m = ——-———Z Zehy 12 ), (9)
Zs:l
(1) _ v (2, —m)(z, — m{)Th" ()
k =

Zle hit) (22) (10)

where
B
{ ()N(N+M)(Zs7¢k )}

5
Y {wsct)N(N+M)(Zsa¢kt))}

8 denotes a positive constant. If the parameter 3 takes
very small (= 0) then h( (z) is regarded as the uni-
form distribution. This means that all z, contribute
uniformly to the estimation of the parameters. When
8 takes 1, the DAEM algorithm is equivalent to the
EM algorithm. In the estimation of parameters, the
DAEM can avoid the local optimal solution by using
an annealing which increases 3 from a small value to
1 gradually.

2. 4 Models

We further improve the PNN to execute faster
learning and avoid the over-fitting. The following sur-
vival of the fittest type learning rule is applied to the
update rule[2] of parameter w.

wi Y = { Zh“ >+1} (12)

This update rule works for pruning the redundant in-
put neurons. This effect can realize the faster learning

hit) (ZS) =

(11)
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and the avoidance of the over-fitting by using only nec-
essary input neurons for estimating the unknown prob-
ability density function.We call such neural network a
Competitive Probabilistic Neural Network (CPNN).

We can apply, of cause, the steepest decsent method
to obtain the parameter § which maximizes the log-
likelihood function L(zs,8), however it is easily con-
sidered that iteration number of learning will be fluc-
tuation by the setting of learning rate. Therefor we
apply the learning rule which is derived from the EM
algorithm to the proposed system where the input neu-
rons and the central output neuron is used for learn-
ing. Then the proposed system generates outputs of
the right and left output neuron group by using ob-
tained parameters. From reasons mentioned above,
the proposed system is united model of the learning
part and the output part through the input neurons.

In the simulation we first show the effectiveness of
the proposed CPNN for nonlinear modelling. In order
to show the effectiveness of the CPNN we consider the
following three different learning algorithms for the
PNN.

Model PNN: PNN using a EM algorithm which
does not have a ability pruning neurons.

Model PNN+P: PNN using a EM algorithm w-
hich has a ability pruning neurons by an addi-
tional condition.

Model CPNN: PNN using a DAEM algorithm
which has a ability pruning the redundant neu-
rons by both the survival of the fittest type learn-
ing rule and an additional condition.

As the additional condition to pruning neurons, we
consider that if the parameter wy, satisfies wy < Cy
then the kth input neuron vanishes.

3 Simulation Results
3.1 Effectiveness of CPNN

Table 1 shows the differences among these learning
algorithms in applying to the same data. All models
have 300 input neurons at initial state.

Ng denotes the number of surviving input neurons.
The iteration number (Iy) of learning is counted at ev-
ery update about all parameters wy, (k =1,2,---,K),
mi (i=1,2,---,N)and o (i, =1,2,---,N).

From results obtained above and results of the mul-
tiple regression analysis, compared with the linear
modelling, the nonlinear modelling can reduce the er-
ror E and the real error E,. It is particularly known
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Table 1 (a) Learning results (C,, = 0.001).
Ns | In |E(x10%)|R2(%)| E.
PNN | 200 | 4600 | 8.6 99.92 | 5448.96
PNN+P|l 116 {2668 | 8.9 99.92 | 5493.42
CPNN || 176 | 4048 | 4.4 | 99.98 | 3039.67

Table 1 (b) Learning results (C,, = 0.003).
NS IN E(><102) Rz(%) E,. :
PNN+P| 71 [1633] 11.9 | 99.85 [6584.94 |
CPNN || 135 |3105| 5.4 99.97 | 3072.24

that the model CPNN can estimate the joint probabil-
ity density function of the sampling data better than
the other two models PNN and PNN+P.

The number of survival input neurons (Ns) and
the iteration number (Iy) of the model PNN+P are
smaller than the model CPNN, which means that the
usual PNN estimates the unknown function by using
many redundant input neurons which generate small
outputs. Such input neurons cause not only the delay
of learning but also the over-fitting. However even if
we eliminate such redundant input neurons by consid-
ering the condition of pruning, we can not expect a
good performance for the nonlinear modelling by such
model PNN+P which can not reduce a large error.

On the other hand, the proposed CPNN can re-
duce the errors and increase the adjusted coefficient of
multiple determination R2. The reason why it shows
a good performance that the necessary input neurons
to estimate a function tend to generate large outputs
by the survival of the fittest type learning rule of the
CPNN.

3. 2 Analysis Results by Proposed
System

We secondly apply the proposed decision support
system to the sampling data in agriculture from 1997
to 1999. In this case, N = 11 and M = 1. The
relationship between the brix (= y;) and the other
factors can be obtained by observing one of output
Ly; = Ep[zl|zt : 6], (i = 1,2,---,N) of the left out-
put neuron group after learning. Figure 3 shows the
relationship between the leaf color (= z3) and the brix,
where the real line output of the L;3.

We can easily understood that the proposed system
could estimate the nonlinear transformation from the
exogenous variables to the endogenous variable.

We finally shows that the proposed decision sup-
port system can advise a detailed policy in response
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Figure 3 The relationship between the leaf color
and the brix (or acid).

to a situation. In this case, it is assumed that the
percentage of water content (= z4) is a controllable
exogenous variable. Therefor we should observe the
output Ry = Er[z%|z, : 6]. The inputs I (j # i)
are settled to sth sampling data when the system gen-
erates the output Ry4. Figure 4 shows the analysis
results for the 20th sampling datum where the real
line output of the Ry4;.
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Figure 4 The maximum likelihood estimator of
the percentage of water content [%]
for the brix (or acid) at 20th sampling datum.
(025 are given by learning.)

The line represents the maximum likelihood estima-
tor. From figure 4, for example, the decision support
system advises that the percentage of water content
should be given by around 60% to make the brix up in
the situation. That is, in order to increase the brix, the
percentage of water content must be increased. How-
ever the results of this analysis show that there are
some cases which are different from such tendencies in
the past situations. The reason why we have such re-
sult which differs from the usual sense that it is stems
from the consideration about the error of observation.

The proposed system can consider the error of
the observation by settling the parameters o (k=
1,2,---,K). This means that we can estimate a large
observation error for the CP by giving the parameters
35 small values, which lets us be able to consider the
existence of such latent error. Figure 4 (b) is a result
obtained under the parameters o3> are given by the

:2: 4

small constants.

4 Summary

In this study, we propose an application of a neural
network to a decision support system. We further pro-
pose the competitive probabilistic neural network ap-
plying a survival of the fittest type learning rule. Our
model is an algorithm which extends the deterministic
annealing Expectation Maximization algorithm.

In simulations, we show the effectiveness of the pro-
posed CPNN for a nonlinear modelling, where the
CPNN can can execute faster learning and avoid over-
fitting rather than the usual probabilistic neural net-
work. Furthermore the results obtained by applying
the proposed decision support system to the sampling
data show that the proposed system can not only give
the general tendencies which agree with the usual lin-
e