A parameter optimization method for Digital Spiking Silicon Neuron model

Takuya Nanami
The University of Tokyo, Institute of industrial Science
Tokyo, Japan

Takashi Kohno
The University of Tokyo, Institute of industrial Science
Tokyo, Japan
nanami@sat.t.u-tokyo.ac.jp, kohno@sat.t.u-tokyo.ac.jp

Abstract

DSSN model is a qualitative neuronal model designed for efficient implementation in a digital arithmetic circuit. In our previous studies, we extended this model to support a wide variety of neuronal classes. Parameters of the DSSN model were hand-fitted to reproduce neuronal activity precisely. In this work, we studied automatic parameter fitting procedure for the DSSN model. We optimized parameters of the model by a GPU-based implementation of the differential evolution algorithm in order to reproduce waveforms of the ionic-conductance models and reduce necessary circuit resources for the implementation.

Keywords: Silicon neuronal network, Spiking neuron model, Differential evolution, FPGA

1. Introduction

A wide variety of neuronal models have been used in silicon neuronal networks because of the trade-off between reproducibility of neuronal activities and computational efficiency. For example, ionic-conductance models can reproduce a neuronal activity accurately but demands enormous computational resources in large-scale implementations. In contrast, integrate-and-fire based models such as the LIF and Izhikevich models [1] can be implemented with less resource, because they approximate a spiking process by the resetting of the state variables. However, they have reduced reproducibility of complex neuronal activities. For example, these models assume fixed maximum membrane potentials during the spike process, whereas the spike intensity is nonuniform in the nervous system [2]. The DSSN model [3] is a qualitative neuronal model designed for efficient implementation in a digital arithmetic circuit. In our previous studies [4][5], we extended the DSSN models to support various neuronal activities; regular spiking, fast spiking, intrinsically bursting, low-threshold spiking, elliptic bursting, and parabolic bursting.

To reproduce a variety of spiking properties in neurons, appropriate parameter sets for neuronal models have to be found. The relationship between the values of the parameters and the behavior of the model is generally complex, and it is difficult and time-consuming to find an appropriate parameter set. Automatic parameter fitting procedures have been studied as a solution to this problem. Parameters for Hodgkin-Huxley-type models have been tuned automatically in [6] and [7]. Pospischil et al [8] reproduced regular and fast spiking neuron classes by simulated annealing based optimization method using a cost function composed of the firing rate and the adaptation time. Buhry et al. [9] developed automatic parameter estimation using a differential evolution algorithm for a Hodgkin-Huxley type model and a neuromimetic analog integrated circuit.

In this work, we studied automatic parameter fitting procedure for the DSSN model. We reproduced regular and fast spiking classes by a GPU-based implementation of the differential evolution algorithm. Regular-spiking (RS) is a most typical classes of cortical neurons and is characterized by spike-frequency adaptation; the spike frequency decreases over time in response to a constant stimulus input. Conversely, Fast-spiking (FS) neurons maintain firing at a constant...
frequency. Parameters were optimized to reproduce waveforms of the ionic-conductance models in [8] and reduce the circuit resource requirements for implementation.

The remainder of this paper is organized as follows. Section 2 introduces our neuron model, differential evolitional algorithm, details of our parameter optimization procedure, and GPU-based implementation. The result is shown in Section 3. Section 4 summarizes the work and suggests ideas for future.

2. Method

2.1. Digital Spiking Silicon Neuron model

The 3-variable DSSN model is a qualitative neuron model that can simulate several classes of neuronal activities by Euler’s method with fixed point operation including RS and FS [4]. Equations for regular and fast spiking are given by

\[
\frac{dv}{dt} = \frac{1}{\tau} (f(v) - n - q + I_b + I_{stim}),
\]

\[
\frac{dn}{dt} = \frac{1}{\tau} (g(v) - n),
\]

\[
\frac{dq}{dt} = \frac{\epsilon}{\tau} (h(v) - q),
\]

\[
f(v) \equiv \begin{cases}
 a_n (v - b_{fn})^2 + c_{fn} & (v < 0) \\
 a_p (v - b_{fp})^2 + c_{fp} & (v \geq 0),
\end{cases}
\]

\[g(v) \equiv \begin{cases}
 a_n (v - b_{gn})^2 + c_{gn} & (v < r_g) \\
 a_p (v - b_{gp})^2 + c_{gp} & (v \geq r_g),
\end{cases}
\]

\[h(v) \equiv \begin{cases}
 a_n (v - b_{hn})^2 + c_{hn} & (v < r_h) \\
 a_p (v - b_{hp})^2 + c_{hp} & (v \geq r_h),
\end{cases}
\]

where \(v\) corresponds to the membrane potential, \(n\) and \(q\) are the fast and slow variables, respectively, that abstractly describe the activity of the ion channels. Parameter \(I_b\) is a bias constant and \(I_{stim}\) represents the input stimulus. Parameters \(\theta, \epsilon, \tau\) control the time constants of the variables. Parameters, \(a_n, b_n,\) and \(c_n,\) where \(x\) is \(fn, fp, gn, gp, hn,\) or \(hp,\) are constants that adjust the nullclines of the variables. All of the variables and constants in this qualitative model are purely with no physical units. A cubic shaped \(v\)-nullcline is a key to replicate the spiking dynamics in qualitative models. Because multipliers are resource-consuming in a digital arithmetic circuit, the DSSN model adopts a piecewise quadratic function for the \(v\)-nullcline so that its numerical integration step requires only one multiplication between variables.

2.2. Differential evolution algorithm

Differential evolution (DE) algorithm [10] is a popular heuristic method to solve optimization problems using a real number function. It is characterized by its mutation process that uses geometrical location of whole population. In the following, we explain each step in the DE algorithm. We define \(x^k_j\) as the gene \(j\) of the \(k\)th individual of the \(i\)th generation.

- **Initialization**

 We generate \(M\)-dimensional parameter vectors \(x^i_{\text{mut}}\) as follows:

 \[
 \forall i = 1, \ldots, N, \quad x^i_{\text{mut}} = x^i_k + F \cdot (x^i_r - x^i_s),
 \]

 where \(r_1, r_2,\) and \(r_3\) are integer randomly chosen from \([0, N - 1]\). \(F\) is usually set to 0.5.

- **Crossover**

 We generate new parameter vectors \(x^i_{\text{cross}}\) that inherit genes of \(x^i_{\text{mut}}\), with a probability CR.

 \[
 \forall i = 1, \ldots, N, \quad \forall j = 1, \ldots, M,
 \]

 \[
 x^i_{\text{cross}}(j) = \begin{cases}
 x^i_{\text{mut}}(j) & \text{if } (\text{rand} \leq \text{CR}) \\
 x^i_k(j) & \text{otherwise},
\end{cases}
\]

 where CR is usually set to 0.5.

- **Selection**

 A selection is conducted by comparing the cost function values of \(x^i_{\text{cross}}\) and \(x^i_{\text{mut}},\) respectively, as follows:

 \[
 \forall i = 1, \ldots, N,
 \]

 \[
 x^i_{k+1} = \begin{cases}
 x^i_{\text{cross}}(j) & \text{if } f(x^i_{\text{cross}}) \leq f(x^i_k) \\
 x^i_k & \text{otherwise},
\end{cases}
\]

 where \(f(x)\) returns the value of the cost for parameter vector \(x\).

 A set of procedures including mutation, crossover, and selection is repeated for 10000 times, and the parameter vector that produces the lowest value in the cost function is finally adopted.

2.1. Parameter optimization procedure

The DSSN model for RS and FS classes has 24 parameters, exploring whose spanning space is not realistic with average computing power available to those who are not specialized in high performance computing (HPC). To reproduce the dimension of the parameter space to be explored by the DE algorithm, we first explored the parameters that control the dynamics
of the fast state variables v and n to fit the spike generation mechanism. Then, the parameters related to the slow state variable q were determined to fit the adaptation of the spike-frequency.

In the DSSN model’s equation, some parameters are a coefficient of a variable. In its circuit implementation, a multiplication between a coefficient and a state variable was realized by shifters and adders, and we need a larger number of couples of an adder and a shifter as the number of digits with value 1 in the fixed point representation of the coefficient increases. Parameters were optimized for not only reproducing waveforms of the ionic-conductance model but also reducing the circuit size.

In the procedure to determine the parameters that control the dynamics of the two fast variables, we fixed v-nullcline to facilitate parameter exploration while considering the dynamics of the spike generation process. It does not severely restrict the dynamical property of the model, because the relation between the v- and n- nullclines is one of the major factors that rule the dynamical structures in our neuronal model. We defined the cost function as follows:

$$f_1(x) = f_w(x) + k_1f_{b1}(x),$$

where $f_w(x)$ is a square error between the waveforms of the DSSN model with parameter vector x and a target waveform. The target waveform was calculated by a fast subsystem of the DSSN model in our previous study [4], which is tuned to reproduce mathematical structure of the ionic conductance model in [8]. Note that minimum and maximum values of waveforms are normalized to 0 and 1 for comparison. Function f_{b1} is a number of digits with value 1 in the binary fixed-point expression of the coefficients in x. Constant k_1 is to balance this couple of cost functions. Parameters that control the dynamics of the fast variables were determined to minimize the cost function f_1 by the DE algorithm.

The remaining parameters related to slow variable q were determined to reproduce the spike frequency adaptation. The cost function is

$$f_2(x) = f_h(x) + k_2f_{b2}(x),$$

where $f_h(x)$ is a square error between spike timings of the DSSN model with a parameter vector x and that of the target ionic-conductance model in response to a step stimulus. Function f_{b2} is a number of digits with value 1 in the binary fixed-point expression of the coefficients in x, and k_2 is a constant to balance this couple of cost functions.

The DE algorithm is known to be compatible with parallel computation schemes because of its intrinsic parallel structure. We accelerated the calculation by the Graphic processing unit (GPU) to obtain better parameter solution by executing a larger number of DE steps in a time period. The calculation of the cost function, in which the differential equations are solved by the Euler’s method for thousands of times, was parallelly processed on a GPU.

3. Result

We found five parameter sets with which the DSSN model reproduces the activities of the ionic-conductance models for three RS and two FS cells whose characteristics are slightly different from each other (Fig. 1).

We evaluated the similarity of the spiking patterns between the ionic-conductance model and the DSSN model by calculating C_v and L_v [11] that are statistics for the spike sequence while changing the stimulus intensity (Fig. 2). They are defined as follows:

$$C_v = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (T - T_i)^2 / T}$$

$$L_v = \frac{1}{n-1} \sum_{i=1}^{n} (T_i - T_{i+1})^2$$

where T_i is the ith spike time.
where T_{i} denotes the ith interspike interval, \bar{T}_i is the average of T_{i}, and n is the number of spikes in the sequence. Both models have same characteristics on $C_V - L_V$ plane in each cell. The results in Figs. 1 and 2 were obtained by numerical integration with the Euler's method ($\Delta t = 2^{-13}$ s) where each variable was expressed by 18-bit fixed point with 14-bit fraction part. The same results are expected to be observed in the following FPGA implementation, because this condition is the same as our VHDL codes.

We compiled the DSSN models for Virtex-7 XC7VX690T FPGA using Xilinx Vivado Design Suite. Device utilization is listed in Table 1. In the column labeled (f) and (g), the resource usage for RS and FS settings in [4] is shown. The requirement for LUTs was reduced down to less than half in all the settings.

4. Conclusion

In this work, we developed a parameter optimization method for the DSSN model on the basis of the DE algorithm. By splitting the optimization process in 24-dimensional parameter space into two steps, we could find parameter sets with which the DSSN model reproduces the characteristics activities of RS and FS cells without using special HPC systems. Cost functions $f_{bx} (x = 1,2)$ were introduced so that the circuit size is reduced. We also confirmed qualitative similarity between the ionic-conductance model and the DSSN model by measuring statistics for the spike timing. In our future work, we will improve this optimization method to cover above other neuron classes.

Acknowledgement

This work was partially supported by JSPS SAKURA Program and JST PRESTO and CREST.

References

© The 2017 International Conference on Artificial Life and Robotics (ICAROB 2017), Jan. 19-22, Seagssia Convention Center, Miyazaki, Japan