Four-Dimensional Homogeneous Systolic Pyramid Automata

Makoto Nagatomo, Makoto Sakamoto, Chongyang Sun, Shinnosuke Yano, Satoshi Ikeda
Faculty of Engineering, University of Miyazaki, 1-1, Gakuen Kibanadai-nishi, Miyazaki-shi, 889-2192
Miyazaki, Japan

Takao Ito, Tsutomu Ito
Institute of Engineering, Hiroshima University, 4-1, Kagamiyama 1-chomeHigashi-Hiroshima, Hiroshima 739-8527
Hiroshima, Japan

Yasuo Uchida
Department of Business Administration, Ube National College of Technology, Tokiwadai Ube, Yamaguchi 755-8555
Yamaguchi, Japan

Tsunehiro Yoshinaga
Department of Computer Science & Electronic Engineering, National Institute of Technology, Tokuyama College
GakuendaiShunan, Yamaguchi 745-8585
Yamaguchi, Japan

Abstract

Cellular automaton is famous as a kind of the parallel automaton. Cellular automata were investigated not only in the viewpoint of formal language theory, but also in the viewpoint of pattern recognition. Cellular automata can be classified into some types. A systolic pyramid automaton is also one parallel model of various cellular automata. A homogeneous systolic pyramid automaton with four-dimensional layers (4-HSPA) is a pyramid stack of four-dimensional arrays of cells in which the bottom four-dimensional layer (level 0) has size an (a≥1), the next lowest 4(a-1), and so forth, the (a-1)st four-dimensional layer (level (a-1)) consisting of a single cell, called the root. Each cell means an identical finite-state machine. The input is accepted if and only if the root cell ever enters an accepting state. A 4-HSPA is said to be a real-time 4-HSPA if for every four-dimensional tape of size 4a (a≥1) it accepts the four-dimensional tape in time a-1. Moreover, a 1-way four-dimensional cellular automaton (1-4CA) can be considered as a natural extension of the 1-way two-dimensional cellular automaton to four-dimension. The initial configuration is accepted if the last special cell reaches a final state. A 1-4CA is said to be a real-time 1-4CA if when started with four-dimensional array of cells in nonquiescent state, the special cell reaches a final state. In this paper, we propose a homogeneous systolic automaton with four-dimensional layers (4-HSPA), and investigate some properties of real-time 4-HSPA. Specifically, we first investigate a relationship between the accepting powers of real-time 4-HSPA’s and real-time 1-4CA’s. We next show the recognizability of four-dimensional connected tapes by real-time 4-HSPA’s.

Keywords: cellular automaton, diameter, finite automaton, four-dimension, parallelism, pattern recognition

1. Introduction

In recent years, due to the advances in many application areas such as dynamic image processing, computer animation, VR (virtual reality), AR (augmented reality), and so on, the study of four-dimensional pattern processing has been of crucial importance. And the question of whether processing four-dimensional digital...
patterns is much more difficult than three-dimensional ones is of great interest from the theoretical and practical standpoints. Thus, the study of four-dimensional automata as a computational model of four-dimensional pattern processing has been meaningful [4-23]. On the other hand, cellular automata were investigated not only in the viewpoint of formal language theory, but also in the viewpoint of pattern recognition. Cellular automata can be classified into some types [2]. A systolic pyramid automaton is also one parallel model of various cellular automata. In this paper, we propose a homogeneous systolic pyramid automaton with four-dimensional layers (4-HSPA) as a new four-dimensional parallel computational model, and investigate some properties of real-time 4-HSPA.

Let Σ be a finite set of symbols. A four-dimensional tape over Σ is a four-dimensional rectangular array of elements of Σ. The set of all four-dimensional tapes over Σ is denoted by $\Sigma^{[0]}$. Given a tape $x \in \Sigma^{[0]}$, for each integer $j (1 \leq j \leq 4)$, we let $l(x)$ be the length of x along the jth axis. The set of all $x \in \Sigma^{[0]}$ with $l(x) = n_1$, $l_2(x) = n_2$, $l_3(x) = n_3$, and $l_4(x) = n_4$ is denoted by $\Sigma^{(n_1,n_2,n_3,n_4)}$. When $1 \leq i \leq l(x)$ for each $j (1 \leq j \leq 4)$, let $x(i_1, i_2, i_3, i_4)$ denote the symbol in x with coordinates (i_1, i_2, i_3, i_4). Furthermore, we define

$$x \left[(i_1, i_2, i_3), (i'_1, i'_2, i'_3, i'_4) \right],$$

when $1 \leq i \leq i' \leq l(x)$ for each integer $j (1 \leq j \leq 4)$, as the four-dimensional input tape y satisfying the following conditions:

(i) for each $j (1 \leq j \leq 4)$, $l_j(y) = i_j - i'_j + 1$;

(ii) for each $r_1, r_2, r_3, r_4 (1 \leq r_1 \leq l_1(y), 1 \leq r_2 \leq l_2(y), 1 \leq r_3 \leq l_3(y), 1 \leq r_4 \leq l_4(y))$, $y(r_1, r_2, r_3, r_4) = x(r_1 + i_1 - 1, r_2 + i_2 - 1, r_3 + i_3 - 1, r_4 + i_4 - 1)$. (We call $x[(i_1, i_2, i_3, i_4), (i'_1, i'_2, i'_3, i'_4)]$ the $[(i_1, i_2, i_3), (i'_1, i'_2, i'_3, i'_4)]$-segment of x.)

For each $x \in \Sigma^{(n_1,n_2,n_3,n_4)}$ and for each $1 \leq i_1 \leq n_1, 1 \leq i_2 \leq n_2, 1 \leq i_3 \leq n_3, 1 \leq i_4 \leq n_4$, $x[(i_1, 1, 1, 1), (i_2, n_2, n_3, n_4)]$ and $x[(1, i_2, 1, 1), (n_1, n_2, n_3, n_4)]$ are called the i_4th (2-3) plane, the i_3th (1-3) plane, and the i_2th (1-2) plane of each time of x, and are denoted by $x[*, i_2, *, *], x[* , *, i_4, *], x[* , *, i_3, *], x[* , *, i_2, *]$ respectively. $x[*, *, *, i_4]$ also has analogous meaning.

A four-dimensional homogeneous systolic pyramid automaton (4-HSPA) is a pyramid stack of four-dimensional arrays of cells in which the bottom four-dimensional layer (level 0) has size $4a (a \geq 1)$, the next lowest $4(a - 1)$, and so forth, the $(a - 1)$st four-dimensional layer (level $(a - 1)$) consisting of a single cell, called the root. Each cell means an identical finite-state machine, $M = (Q, \Sigma, \delta, \# , F)$, where Q is a finite set of states, $\Sigma \subseteq Q$ is a finite set of input states, $\# \in Q - \Sigma$ is the quiescent state, $F \subseteq Q$ is the set of accepting states, and $\delta: Q^2 \rightarrow Q$ is the state transition function, mapping the current states of M and its 16 son cells in a $2 \times 2 \times 2 \times 2$ block on the four-dimensional layer below into M’s next state. The input is accepted if and only if the root cell ever enters an accepting state. A 4-HSPA is said to be a real-time 4-HSPA if for every four-dimensional tape of size $4a (a \geq 1)$ it accepts the four-dimensional tape in time $a - 1$. By $L^4[4-HSPA]$ we denote the class of the sets of all the four-dimensional tapes accepted by a real-time 4-HSPA.

A 1-way four-dimensional cellular automaton (1-4CA) can be considered as a natural extension of the 1-way two-dimensional cellular automaton to four dimensions [3]. The initial configuration of the cellular automaton is taken to be an $11(x) \times 11(x) \times 13(x) \times 14(x)$ array of cells in the nonquiescent state. The initial configuration is accepted if the last special cell reaches a final state. A 1-4CA is said to be a real-time 1-4CA if when started with an $11(x) \times 11(x) \times 13(x) \times 14(x)$ array of cells in the nonquiescent state, the special cell reaches a final state in time $11(x) \times 11(x) \times 13(x) \times 14(x) - 1$. By $L^1[1-4CA]$ we denote the class of the sets of all the four-dimensional tapes accepted by a real-time 1-4CA [3].

© The 2017 International Conference on Artificial Life and Robotics (ICAROB 2017), Jan. 19-22, Seagaga Convention Center, Miyazaki, Japan
Fig.2: Four-dimensional homogeneous systolic pyramid automaton.

2. Main Results

We mainly investigate a relationship between the accepting powers of real-time 4-HSPA’s and real-time 1-4CA’s. The following theorem implies that real-time 4-HSPA’s are less powerful than real-time 1-4CA’s.

Theorem 2.1. \(L^0[4\text{-HSPA}] \subseteq L^0[1\text{-4CA}] \).

Proof: Let \(V = \{ x \in \{0,1\}^i | l_t(x) = l_2(x) = l_3(x) = l_4(x) = l_t(x) \& \forall i, 1 \leq i \leq t, 1 \leq i \leq t \} \). It is easily shown that \(V \in L^0[1\text{-4CA}] \). Below, we show that \(V \not\in L^0[4\text{-HSPA}] \). Suppose that there exists a real-time 4-HSPA accepting \(V \). For each \(t \geq 4 \), let \(W_t = \{ x \in \{0,1\} | l_t(x) = l_2(x) = l_3(x) = l_4(x) & x\{1,1,2\} \} \).

Sixteen sons of the root cell \(A(t-1,1,1,1) \) of \(M \) are denoted by \(C^\text{UWNP}, C^\text{USWP}, C^\text{USEP}, C^\text{UNEFP}, C^\text{DNWF}, C^\text{DSWP}, C^\text{DSEP}, C^\text{UNEP}, C^\text{USEF}, C^\text{UNEFP}, C^\text{USWP}, C^\text{USEP}, C^\text{USEFP}, C^\text{UNEP}, C^\text{USEF}, C^\text{UNEP}, C^\text{DNWF}, C^\text{DSWP}, C^\text{DSEP}, C^\text{UWNP}, C^\text{USWP}, C^\text{USEP}, C^\text{UNEFP} \), respectively. For each \(x \in W_n \), \(x(UNWF), x(USWF), x(USEF), x(UNEF), x(DNWF), x(USWP), x(USEP), x(UNEFP), x(DSWP), x(USEF), x(UNEFP) \) are the states of \(C^\text{UWNP}, C^\text{USWP}, C^\text{USEP}, C^\text{UNEFP}, C^\text{DNWF}, C^\text{DSWP}, C^\text{DSEP}, C^\text{UNEP}, C^\text{USEF}, C^\text{UNEFP} \), at time \(t-2 \), respectively. Let \(\sigma(x) = (x(UNWF), x(USWF), x(USEF), x(UNEFP), x(DNWF), x(USWP), x(USEP), x(UNEFP)) \) and \(\gamma(x) = (x(UNWF), x(USWF), x(USEF), x(UNEFP), x(DNWF), x(USWP), x(USEP), x(UNEFP), x(USEF), x(UNEFP)) \). Then, the following two propositions must hold.

Proposition 2.1. (i) For any two tapes \(x, y \in W(n) \) whose 1st cubes are same, \(\sigma(x) = \sigma(y) \). (ii) For any two tapes \(x, y \in W(n) \) whose nth cubes are same, \(\gamma(x) = \gamma(y) \).

Proof: From the mechanism of each cell, it is easily seen that the states of \(C^\text{UWNP}, C^\text{USWP}, C^\text{USEP}, C^\text{UNEFP}, C^\text{DNWF}, C^\text{DSWP}, C^\text{DSEP}, C^\text{UNEP} \) are not influenced by the information of 1st cube. From this fact, we have (i). The proof of (ii) is the same as that of (i). \(\square \)

Proposition 2.2. For any two tapes \(x, y \in W(t) \) whose 1st cube is different, \(x \neq y \).

Proof: Suppose to the contrary that \(\sigma(x) = \sigma(y) \). We consider two tapes \(x', y' \in W(t) \) satisfying the following: (i) 1st cube of \(x \) and \(n \)th cube of \(x' \) are equal to 1st cube of \(x' \), respectively; (ii) 1st cube of \(y' \) is equal to 1st cube of \(y \), and \(n \)th cube of \(y' \) is equal to 1st cube of \(x \).

As is easily seen, \(x' \in V \) and so \(x' \) is accepted by \(M \). On the other hand, from Proposition 2.1(ii), \(\gamma(x') = \gamma(y') \). From Proposition 2.1(i), \(\sigma(x') = \sigma(x), \sigma(y) = \sigma(y') \). It follows that \(y' \) must be also accepted by \(M \). This contradicts the fact that \(y' \neq y \) is not in \(V \). \(\square \)

Proof of Theorem 2.1 (continued): Let \(p(t) \) be the number of tapes in \(W(t) \) whose 1st cubes are different, and let \(Q(t) = \{ \sigma(x) | x \in W(t) \} \), where \(k \) is the number of states of each cell of \(M \). Then, \(p(t) = 2^2t \), and \(Q(t) \leq k^t \). It follows that \(p(n) > Q(t) \) for large \(t \). Therefore, it follows that for large \(t \), there must be two tapes \(x, y \in W(t) \) such that their 1st cubes are different and \(\sigma(x) = \sigma(y) \). This contradicts Proposition 2.2, so we can conclude that \(V \not\in L^0[4\text{-HSPA}] \). In the case of four-dimension, we can show that \(V \not\in L^0[4\text{-HSPA}] \) by using the same technique. This completes the proof of Theorem 2.1. \(\square \)
We next show the recognizability of four-dimensional connected tapes by real-time 4-HSPA’s by using the same technique of Ref.[3]. Let x in $\{0, 1\}^6$. A maximal subset P of N^6 satisfying the following conditions is called a 1-component of x.

(i) For any $(i_1, i_2, i_3, i_4) \in P$, we have $1 \leq i_1 \leq i_2(x)$, $1 \leq i_3 \leq i_4(x)$, and $x(i_1, i_2, i_3, i_4) = 1$.

(ii) For any $(i_1, i_2, i_3, i_4, (i_1', i_2', i_3', i_4')) \in P$, there exists a sequence $(i_1, 0, i_2, 0, i_3, 0, i_4, 0)(i_1, 1, i_2, 1, i_3, 1, i_4, 1), \ldots, (i_1, 4, i_2, 4, i_3, 4, i_4, 4)$ of elements in P such that $(i_1, 0, i_2, 0, i_3, 0, i_4, 0) = (i_1, 1, i_2, 1, i_3, 1, i_4, 1) = (i_1', 1, i_2', 1, i_3', 1, i_4', 1) = (i_1', 2, i_2', 2, i_3', 2, i_4', 2) + (i_1', j - i_1, j' - 1) + (i_1, j - i_1, j - 1) + (i_1, j - i_1, j - 1) + (i_1, j - i_1, j - 1)$.

Let TC be the set of all the four-dimensional connected tapes. Then, we have

Theorem 2.2. $TC \in \mathbb{F}^4[4-HSPA].$

3. Conclusion

The technique of AR (augmented reality) or VR (virtual reality) progresses like the Pokemon GO and the Virtual Cinema in the world. The virtual technique will spread steadily among our societies in the future. Thus, we think that the study of four-dimensional automata is very meaningful as a computational model of four-dimensional pattern processing. In this paper, we proposed a homogeneous systolic pyramid automaton with four-dimensional layers, and investigated a relationship between the accepting powers of homogeneous systolic pyramid automaton with four-dimensional layers (4-HSPA) and one-way four-dimensional cellular automata (1-4CA) in real time, and showed that real-time 4-HSPA’s are less powerful than real time 1-4CA’s.

It will be interesting to investigate about an alternating version or synchronized alternating version of homogeneous systolic pyramid automaton with four-dimensional layers. Moreover, we think that there are many interesting open problems for digital geometry. Among them, the problem of connectedness, especially topological component is one of the most interesting topics [17].

Finally, we would like to hope that some unsolved problems concerning this paper will be explicated in the near future.

References

© The 2017 International Conference on Artificial Life and Robotics (ICAROB 2017), Jan. 19-22, Seagaia Convention Center, Miyazaki, Japan

