A Method of Detecting Abnormal Crowd Behavior Events Applied in Air Patrol Robot

Huailin Zhao
School of Electrical and Electronic Engineering, Shanghai Institute of Technology, Shanghai, China

Shunzhou Wang
School of Electrical and Electronic Engineering, Shanghai Institute of Technology, Shanghai, China

Shifang Xu
School of Electrical and Electronic Engineering, Shanghai Institute of Technology, Shanghai, China

Yani Zhang
School of Computer Science and Information Engineering, Shanghai Institute of Technology, Shanghai, China

Masanori Sugisaka
Alife Robotics Corporation LTD, Oita, Japan
zhao_huailin@yahoo.com

Abstract

When the ground or air patrol robot monitors a certain area, one of the important intelligent functions is to estimate the crowd density of the monitored area. This paper analyzes the crowd density estimation algorithm, and use a Gaussian process regression model for crowd density estimation. Through the crowd density estimation and changes, we can detect abnormal behavior events of the crowd. The method can not only estimate the population density of the specified area, but also analyze and detect the abnormal behavior events of the crowd. This application provides an important technical support for enhancing the patrol robot monitoring effect.

Keywords: Air Patrol robot, Abnormal event detection, Gaussian process regression

1. Introduction

It is an important research topic to monitor the emergent events in large public places. With the development of robotics technology in recent years\cite{1,2,3,4}, unmanned aerial vehicles (UAVs) play a more and more important role in the field of intelligent monitoring. In this paper, an unmanned aerial vehicle (UAV) is used to monitor the abnormal event of public area. By monitoring the number of people in the specific area, it can alarm in a short time when abnormal number change happens.

A lot of works on the crowd counting algorithm have been studied. The crowd counting algorithm is currently divided into three categories: counting the number of people in the video\cite{5,6,7,8}, counting the number of people in a single image\cite{9}, and counting the number of people based on the deep learning\cite{10,11}. The method of counting the number of people in the video is generally divided into three steps: 1) foreground segmentation 2) feature extraction 3) crowd regression.

Considering the requirements of the performance of real-time and computational resource constraints, we adopt the video-based crowd counting algorithm of Ref.4, and its prediction results are used as the criteria for UAV monitoring abnormal time.
2. Design of the Whole System

The flowchart of air patrol robot monitoring abnormal event in crowded public area is shown in Fig.1. Unmanned aerial vehicles monitor the large public places, the collected images are real-time transmit to remote monitoring terminal. The monitoring terminal use the crowd counting algorithm to count the images from unmanned aircraft real-time, and record the number of changes over time. When the crowd number changes dramatically in a short term, the monitoring terminal remind the management that the region have abnormal immediately.

Fig.1. The flowchart of air patrol robot monitoring abnormal event in crowded public area

3. Crowd Counting Algorithm Based on Video Segmentation and Traditional Machine Learning

Video-based population counting algorithm is generally divided into three steps: 1) foreground segmentation; 2) feature extraction; 3) regression. In this paper, the method in Ref.4 is used, the whole algorithm is shown in Fig.1.

3.1 Foreground segmentation

The purpose of segmentation is to segment the crowd people from the image to facilitate the subsequent step feature extraction. The performance of the segmentation is directly related to the final count precision, so it is an important factor limiting the performance of crowd counting algorithms. Commonly used segmentation algorithms are Optical Flow, Mixture of Dynamic Textures[6], Wavelets and so on. The disadvantage of this motion-based foreground segmentation algorithm is obvious. If the person does not move in the video, the stationary person will be divided into the background, which affects the performance of the crowd counting. In this paper, we use the Mixture of Dynamic Textures[6] to process the foreground segmentation on the UCSD dataset and PETS2009 dataset respectively. The concrete process is shown in Fig.2.

Fig.2. Foreground segmentation based on mixture of dynamic textures(a)UCSD dataset (b)PETS2009 dataset
3.2 Perspective normalization

Due to the perspective of view, people who are close to the camera take more pixels in the image than those who are away from the camera. We use two different perspective normalization method to two different datasets. The perspective normalization is shown in Fig.3.

![Fig.3. Perspective normalization (a)UCSD dataset (b)PETS2009 dataset](image)

On the UCSD dataset, we make a ground plane, which is scaled to measure the height h_1 of the person at ab and the height h_2 of the person on cd. We can see the ground plane as in Figure 3a. The weight of the middle pixel is obtained by multiplying the pixels on ab and cd by the weights 1 and $\frac{h_1}{h_2}$ respectively, and the middle pixel weight is obtained by the linear interpolation between the two lines.

On the PETS2009 dataset, the perspective map is approximating a person moving in a 3-D scene to a cylinder with a height of 1.75 m and a radius of 0.25 m. For each pixel (x, y) in the 2-D camera view, the cylinder is positioned in the 3D scene so that the center of the cylinder is projected to (x, y) in the 2-D view as shown in Figure 3(b), which is shown on the left. The total number of pixels used to fill the cylinder is expressed as $c(x,y)$. The perspective is then calculated as $M(x,y) = c(230,123)/c(x,y)$, where the coordinates $(230,123)$ correspond to the reference person on the right side of the sidewalk. Figure 3(b) is a perspective view with the contour line (red) which is indicated that the pixel weight at that location is $\{1, \ldots, 5\}$.

The mean absolute error (MAE) and the mean square error (MSE) are commonly used to measure the performance of the algorithm.

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |z_i - \hat{z}_i|$$

(1)

$$MSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (z_i - \hat{z}_i)^2}$$

(2)

Where N is the number of pictures to be tested (number of video frames), z_i is the number of the i-th frame, \hat{z}_i is the estimated number of the algorithm.

3.3 Feature extraction

After completion of the foreground segmentation, a variety of low-level features are extracted from the foreground (population) obtained from the segmentation. Common features are: Area and Perimeter of Crowd Mask, Edge Count, Edge Orientation, Texture Features, Minkowski Dimension, and so on. In this project, two datasets are tested respectively, and the feature of each image is saved as a feature vector. There are 29 features in each feature vector of the UCSD dataset. Each feature vector of the PETS2009 dataset has 30 features.

4. Experiments

In this part, we repeat the reference papers Ref.4 and Ref.6 experiments. We use the regression model to regress the feature extracted in the previous step to the number of people in the image. The regression can be a simple linear regression, or a complex nonlinear regression. Commonly regression methods are Linear Regression, Piecewise Linear Regression, Ridge Regression, Gaussian Process Regression, and so on. We use Gaussian process regression to predict the number of people in the image of UCSD dataset and PETS2009 dataset. The prediction result is shown as in Fig.4.
The population count absolute error between the estimate and the true value. The results of the crowd counting algorithm for the UCSD dataset are shown in Figure 4(a)

The MSE of the two groups were 6.015 and 4.529, respectively. The accuracy of the algorithm basically meet the design requirements.

The whole area of scene S1.L1 of PETS2009 dataset was tested by the crowd counting algorithm, and 1308 images are used as training set and the video 13-57, 13-59F, 13-59F, 14-03, 14-03F, 221 images are used as a test set. The output of the Gaussian process regression is rounded to the nearest integer to generate a population count and record the mean square error (MSE) and the absolute error between the estimate and the true value. The population count algorithm for the PETS2009 data set scene S1.L1 count results shown in Figure 4b), the MSE of the two groups of people counting are 0.6063 and 9.873, the accuracy of the crowd counting algorithm basically meet the design requirements.

5. Conclusion

In this paper, we design a monitoring function of patrol robot to detect the abnormal crowd behavior events applied in the monitoring area with the changes of crowd counting results. We analyze the crowd counting algorithm and select the typically machine learning method rather than convolution neural network to apply in this specific filed due to the real-time performance and the computation of the algorithm. We repeat the reference papers experiment and the prediction result of the crowd counting algorithm is not the state of the art, but can basically meet the design purposes. In the future, we will design a new crowd counting algorithm to increase the accuracy and attempt to apply deep learning in the patrol robot monitoring function.

6. References

© The 2017 International Conference on Artificial Life and Robotics (ICAROB 2017), Jan. 19-22, Seagaia Convention Center, Miyazaki, Japan

