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Abstract 

In this paper, a novel four-dimensional (4D) autonomous chaotic system is presented. For chaos control of the 4D 
system, a linear feedback controller only with one variable is designed via matching the variable coefficients of the 
Lyapunov function, so that the system is no longer chaotic or periodic but globally asymptotically converges to the 
equilibrium point at the origin. The numerical simulation results are given to illustrate the feasibility and effectiveness 
of the method. 
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1. Introduction 

In 1963, Edward Lorenz developed a simplified 
mathematical model for atmospheric convection,1 which 
is a three-dimensional(3D) autonomous system and well 
known as the Lorenz system. Since then, many 3D 
chaotic systems have been proposed, such as the unified 
system2, the Qi system3 and so on. With the wide 
application of chaotic characteristics in secure 
communication and other fields, the complexity of 
chaotic systems is increasing. Four and higher 
dimensional chaotic systems have been investigated.4-6 
In this paper, a novel 4D chaotic system is presented. 

Chaos control is one of the major subjects in chaos 
study, and the feedback control is a common method in 
chaos control.7-10 In this paper, the aim of chaos control 
is to design a linear feedback controller and make the 
novel 4D chaotic system no longer chaotic or periodic but 
globally asymptotically stable at the origin. 

The rest of this paper is organized as follows. In 
Section 2, the model of the novel 4D chaotic system and 
its simulation phase portraits are given. In Section 3, a 
Lyapunov function with variable coefficients is selected 

to design a linear feedback controller only with one 
feedback variable and prove the global asymptotic 
stability of the controlled 4D system. Some simulation 
results are given to demonstrate the validity of the linear 
feedback controller. The conclusions are drawn in 
Section 4. 

2. The Novel 4D Chaotic System 

The dynamic equations of the novel 4D chaotic system 
are formulated as 

,
,

,
1,

x a y x
y c x y z xw
z mx y hz
w xy bw

 

where , , ,x y z w  are state variables, and a = 25, b 
= 3, c = 18, m = 19 and h = 14. 

Let the initial values of the 4D system (1) be (x0, y0, 
z0, w0) = (1, 1, 1, 1), then the Lyapunov exponents 

respectively are 1 2.6686 0 , 
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2 0.0003 0 , 3 11.7885 0  and 

4 14.8804 0 . It indicates that the system (1) is 
chaotic. The phase portraits of the 4D system (1) are 
shown in Fig. 1(a1)-(a3). 

 

Fig. 1.  Phase portraits of the novel 4D chaotic system:        
(a1) x-y (a2) y-z (a3) z-w 

3. Chaos Control of the 4D Chaotic System 

3.1. Formulation of the controlled system 

Let 
Tx y z wOX X  be the 

controlled state vector, where 
Tx y z wX =
 

is 
the state vector of the system (1), and 

T0 0 0 0O  is the origin. Then, the controlled 
system can be represented as  

c1

c2

c3

c4

,
,

,
2,

x a y x u
y c x y z xw u
z mx y hz u
w xy bw u

 

where 
T

c c1 c 2 c3 c 4

T
1 2 3 4 1 4, , , 0 3

u u u u

k x k y k z k w k k

u
 

is the linear feedback controller to be designed. 

3.2. Design of the controller 

Convert Eq. (2) to a state-space model which is expressed 
as 

, 4AX X g X  

where 

1

2

3

4

0 0
1 0

1 0
0 0 0

k a a
c k c

A
m k h

k b

, 

and T0 0xw xyg X .
 

Take a positive definite function 
T1V

2
PX X X  

as a Lyapunov function candidate for the system (4), 
where 

1

2
1 2 3 4

3

4

0 0 0
0 0 0

, , , , 0.
0 0 0
0 0 0

n
n

P n n n n
n

n

 

 Then, the derivative V X  is given by 
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where 

11 12 13

21 22 23

31 32 33

44

11 1 1

22 2 2

33 3 3

44 4 4

12 21 1 2

13 31 3

23 32 2 3

0
0
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,
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q q q
q q q

Q
q q q

q

q n k a

q n k c

q n k h

q n k b
q q an cn
q q mn
q q n n

 

Let n4 = n2, then Eq. (5) is simplified as 
T1V .

2
QX X X  

For the derivative V X  to be negative definite, the 

leading principal minors of the matrix Q must satisfy 

1 1 1

2 1 2 1 2

2
1 2

3 1 2 3 1 2 3

3 1 2 2 3

2 2
2 3 2

2
3 3 1 2

2
1 1 2 3

4 2 4 3

2 0, 6
4

0, 7

8
2

2

2

2 0, 8
2 0. 9

n k a
n n k a k c

an cn

n n n k a k c k h

mn an cn n n

n m n k c

n k h an cn

n k a n n
n k b

 

From Eq. (6), k1 should satisfy k1 > -a. Let k1 = 0 and 
substitute it into Eq. (7), then k2 should satisfy 

2
1 2

2
1 2

. 10
4

an cn
k c

an n
 

Assume that the minimum number of the feedback 
variables might be equal to the number of the positive 
Lyapunov exponents.11 The 4D chaotic system (1) only 
has one positive Lyapunov exponent and k2 ≠ 0 as shown 
in Eq. (10), so let k3 = 0 and substitute k1 = k3 = 0 into Eq. 
(8). It is obtained that 

3 1 2 3 2

3 1 2 2 3

22 2
2 3 2 3 1 2

2
1 2 3

8
2

2 2

2 0. 11

ahn n n k c

mn an cn n n

n m n k c hn an cn

an n n

 

Let n1 = n2 = n3. From Eq. (11), k2 should satisfy 
2

2 2 , 12
4
h a c

k c
ah m

 

so that Eq. (9) is satisfied as long as k4 > -b. Hence, let k4 

= 0. 
For V X  to be negative definite, k2 should satisfy 

both Eq. (10) and Eq.(12). It means that 
2 2

2 2 ,
4 4
h a c a c

k c c
ah m a

 

when n1 = n2 = n3 = n4. Consequently, let k2 = 45. As a 
result, because the derivative V X  is negative 

definite and the Lyapunov function V X  is positive 

definite and radially unbounded, it can be confirmed that 
the controlled system (2) is globally asymptotically 
stable at the origin. 

Substituting k2 = 45 and k1 = k3 = k4 = 0 into Eq. (3) 
yields 

T
c c1 c2 c3 c4

T0 45 0 0 . 13

u u u u

y

u  

3.3. Numerical simulation 

Substitute Eq. (13) into Eq. (2) and let the initial values 

still be 0 0 0 0, , , 1,1,1,1x y z w , then the 
Lyapunov exponents of the controlled system (2) 

respectively are c1 3.0397 , c2 3.7495 , 

c3 15.3788 and c4 46.8316 , which are all 
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negative. It implies that the controlled system (2) is no 
longer chaotic or periodic but stable at the origin. 

 

Fig. 2.  Curves of the state variables of the controlled system 

The curves of the state variables of the controlled 
system (2) are shown in Fig. 2. The horizontal axis t 
expresses the solution interval of differential equations, 
so t is a dimensionless quantity. From Fig. 2, it can be 
seen that the state variables x, y , z and w  converge 
to zero asymptotically and rapidly. It illustrates that the 
controller (13) is feasible and effective for chaos control 
of the novel 4D chaotic system (1). 

4. Conclusions 

In this paper, a novel 4D chaotic system is presented. The 
model of the 4D system and its chaotic attractor are 
complex and could be applied to secure communication. 
For chaos control of the 4D chaotic system, different 
groups of the coefficients of the Lyapunov function yield 
different linear feedback controllers. It makes the form 
and parameters of the linear feedback controller flexible 
to select. The linear feedback controller designed in this 
paper only has one feedback variable, so that it is easy to 
implement via circuit. Furthermore, the centers of the 
state variables of the 4D chaotic system have been 
translated to the origin before the controlled system is 
formulated. It means that this method can be used to 

make the system globally asymptotically converge to any 
point or even some specified states via center translation. 
Thus, this method could be applied to chaos 
synchronization of the novel 4D chaotic systems. It 
would be discussed in another paper. The study in this 
paper has some engineering significance. 
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