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Abstract 

Hinton’s deep auto-encoder (DAE) with multiple restricted Boltzmann machines (RBMs) is trained by the 
unsupervised learning of RBMs and fine-tuned by the supervised learning with error-backpropagation (BP). 
Kuremoto et al. proposed a deep belief network (DBN) with RBMs as a time series predictor, and used the same 
training methods as DAE. Recently, Hirata et al. proposed to fine-tune the DBN with a reinforcement learning (RL) 
algorithm named “Stochastic Gradient Ascent (SGA)” proposed by Kimura & Kobayashi and showed the priority 
to the conventional training method by a benchmark time series data CATS.  In this paper, DBN with SGA is 
invested its effectiveness for real time series data. Experiments using atmospheric CO2 concentration, sunspot 
number, and Darwin sea level pressures were reported. 
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1. Introduction 

Deep learning (DL) is the novel kernel technique of 
artificial intelligence (AI) developed rapidly in 
nowadays. As the training method of artificial neural 
networks (ANNs), in 2006, DL firstly is introduced by 
Hinton’s deep auto-encoder (DAE) [1], which has 
multiple stacked restricted Boltzmann machines 
(RBMs). The learning process of DAE is divided into 
two phases: firstly, pretraining, which is a kind of 
unsupervised learning using the gradient of network 
energy of RBMs, and secondly fine-tuning using the 
supervised learning: error-backpropagation (BP) [2].  
    To deal with the adaptive behavior acquisition 
problem in unknown environment, reinforcement 
learning (RL), which is a kind of machine learning  
method adjusting is output by the rewards/punishment 
from the environment when a learner (system) changed 
its state by the policy of output, has been studied for 
decades [3] [4]. Recently, RL is also introduced into 

deep neural networks [5]-[7]. In [5], a deep Q-network 
(DQN) is proposed and applied to game (named 
ATARI) control and reached human level. In [6], a 
computer software named AlphaGo, using a deep neural 
network and RL, won the world champion of the game 
Go. In [7], we adopted a policy gradient RL algorithm 
[8] [9] into a deep belief net (DBN) proposed by 
Kuremoto et al. [10]-[13] instead of its fine-tuning 
method BP. And using a benchmark data CATS which 
is used by time series forecasting competition with 
ANNs [14] [15], the DBN with RL showed the highest 
prediction precision comparing to all conventional 
methods in the competition and the conventional DBN 
with BP learning [12] [13].  

In this paper, we concentrate to investigate the 
effectiveness of the DBN with RL for real time series 
forecasting. Three kinds of real time series data which 
are weekly average of CO2 concentration in atmosphere 
at Hawaii, monthly average of sea level pressures at 
Darwin, the number of sunspot monthly provided by 
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Aalto University [16] were used in the forecasting 
experiments, and the prediction precision was compared 
to the conventional BP learning method. And as the 
results, DBN with RL showed the higher performance 
than the conventional DBN with BP in the process of 
fine-tuning of the network.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2. DBN with BP 

In [10] [11], Kuremoto et al. firstly applied Hinton & 
Slakhutdinov’s deep belief net (DBN) with restricted 
Boltzmann machines (RBMs) to the field of time series 
forecasting. In [12] and [13], Kuremoto, Hirata, et al. 
constructed a DBN with RBMs and a multi-layer 
perceptron (MLP) to improve the previous time series 
predictor with RBMs. In [7], Hirata et al. adopted a 
reinforcement learning named “stochastic gradient 
ascent” (SGA) [8] [9] into DBN instead of the BP 
learning used in the fine-tuning of the network. In this 
section, the structure of DBN and learning methods are 
introduced. 

2.1. DBN with RBMs and MLP 

As a neural predictor model, a DBN composed by 
multiple RBMs and a MLP is shown in Fig. 1 [7] [12] 
[13]. The visible layer of RBM 1 (1st Layer) are input 
with raw data of time series data (omitted in the figure). 
The hidden layer of RBM L+1 are used as the input 
layer of the MLP. The output of MLP is with one unit in 
the case of DBN using BP learning, and it has two units 

which are parameters of Gaussian distribution function 
used in the case of SGA learning method [4] [7]. 

2.2. BP learning for DBN 

Let E is the mean squared error (MSE) between the 
output of DBN and the teacher signal, the weight of 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 connections  w between layers of RBMs and MLP, and 
the bias of RBMs b are modified as following. 
 

 
  (1) 

 

 
         (2) 

where a is the learning rate. 

2.3. SGA learning for DBN 

The SGA algorithm and the learning rule for the 
weight of DBN’s layers and parameters of the stochastic 
policy (Gaussian distribution function) were introduced 
in [7]. 

3. Prediction Experiments and Results 
We predicted three types of natural phenomenon time 
series data given by Aalto University [16].  

 CO2: Atmospheric CO2 from continuous air 
samples Weekly averages atmospheric CO2 

Fig.1.  A structure of DBN composed by RBMs and a MLP 
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concentration derived from continuous air samples, 
Hawaii, 2225 values 

 Sea level pressures: Monthly values of the Darwin 
Sea Level Pressure series, 1882-1998, 1300 values 

 Sunspot Number: Monthly averages of sunspot 
numbers from 1749 through the present, 3078 values 
 
In Fig. 2 to Fig. 4, the one-ahead prediction results 

of DBN with BP and DBN with SGA were shown. In 
Table 1, the comparison of forecasting precision (MSE) 
of these different learning methods for DBN was given. 
The DBN with SGA showed its priority to the DBN 
with BP in all cases of real time series data. In Table 2, 
the number of samples and structures of different DBNs 

 

Fig.2. Prediction result of CO2 data 
 

Fig.3. Prediction result of Sea level pressure data 
 

 

Table.1. Prediction MSE of real time series data [16] 

 DBN with BP DBN with SGA 
CO2 0.2671 0.2047 

Sea level pressure 0.9902 0.9003 
Sun spot number 733.51 364.05 

 

 Fig.4. Prediction result of Sun spot number data 

 

 
Fig.5. Changes of evaluation function in random search 

[17] (CO2, DBN with SGA) 
 

were listed. To decide the number of RBMs, and the 
number of units on different layers of RBMs and MLP, 
random search (RS) [17] was used in the experiments. 
As an optimization method, RS used random values of 
parameter vector spaces to find the lower forecasting 
error (MSE). The change of evaluation function in the  

 

Series Total size Testing size DBN with BP DBN with SGA 
CO2 2225 225 15-17-17-1 20-18-7-2 
Sea level pressure 1400 400 16-18-18-1 16-20-8-7-2 
Sun spot number 3078 578 20-20-17-18-1 19-19-20-10-2 

Table.2. Sizes of time series data and structures of prediction networks 
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Fig.6. Changes in learning MSE (CO2, DBN with SGA) 

 
case of DBN with SGA for CO2 forecasting is shown in Fig. 5 
as a sample. In Fig. 6, the change of MSE in SGA learning 
process is shown. As a stochastic forecasting method of RL, 
the vibration of MSE needs to be reduced by tuning learning 
rates and rewards and we leave it as a future work. 

4. Conclusion 

In this paper, a reinforcement learning (RL) method 
“stochastic gradient ascent (SGA)” for fine-tuning of a 
deep belief net (DBN) with multiple restricted 
Boltzmann machines (RBMs) and a multi-layer 
perceptron (MLP) was compared to the conventional 
method  error backpropagation (BP) in the case of real 
time series forecasting. Different to the supervised 
learning method which uses learning error exhaustively, 
RL a reward function which allows a range of errors 
between the output of the model and the teach signal 
and it may raise the forecasting precision for the real 
time series data. 
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