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Abstract 

A mobile manipulator was designed by combining three-wheeled mobile robot equipped with the DC motor and 
three-links manipulator equipped with dynamixel motor. The kinematic relation and dynamic model were built via 
nonholonomic constraint and Euler-Lagrange equation. For the decoupled model of this system, adaptive finite-
time controllers sliding mode controller (SMC) and backstepping controller were designed respectively to obtain 
fast tracking response. Simulation and experimental results show the efficacy of the proposed control scheme. 

Keywords: Mobile-manipulator, Finite-time sliding mode control, Finite-time backsteppping control. 

1. Introduction 

The mobile-manipulator system has more freedom for 
robot works and then it has drawn more attention 
recently. However, it’s modeling is difficult due to 
nonholonomic constraint of mobile platform and 
coupling between mobile platform and manipulator. 
The kinematic and dynamic coupled model for three-
wheeled mobile robot and three-link manipulator 
system is derived using nonholomonic constraint and 
Euler-Lagrange equation. SMC [1],[2] and 
backstepping control [3] are frequently applied to 
control robot system but these controllers are derived 
based on the infinite-time stability theorem. Therefore, 
the convergence time is generally slow and fast 
response is not guaranteed. Finite-time control term 
[4],[5] is inserted in both controls to improve 
convergence time of the mobile robot and manipulator. 
In addition, the system parameter and uncertainty are 
obtained by estimation for them via adaptive observers. 
This leads to complex structure of the whole control 
system. An assumed parameter feedforward 

compensator is introduced to compensating unknown 
parameters and uncertainty. 

Simulation for the decoupled mobile platform and  
manipulator was carried out to show the efficacy of the 
proposed control scheme. 

2.1Description of the Mobile-Manipulator 

In this section, the dynamic equations of a three-
wheeled mobile manipulator system are derived using 
the Euler-Lagrange equation. The derived dynamics are 
modified from the relationship of forces acting on the 
body and links, and constraints between the wheel and 
contact surface without considering the Lagrange 
multiplier method, which is used to solve the 
nonholonomic constraint problems of mobile robots. 
The two-wheeled mobile manipulator is shown in Fig. 1, 
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Fig. 1 Schematic diagram and photograph of the three-

link and three-wheeled mobile manipulator 
 
 where variables are defined as follows: ,r l are the 
torques of two wheels; 1 2 3, , are the torques of the 
joint1, 2 and 3; ,r l are the rotation angle of the left 
and right wheel of the mobile platform, 
respectively; v , are the forward velocity and the 
rotation angle of the mobile platform, respectively; 1 is 
the rotation angle of the link 1 with respect 
to 0z axis; 2 3, are the rotational angle of the link1 and 
link 2 with respect to 1z and 2z axis, 
respectively; 1 2 35 , 0.58 , 0.5 , ,p wm kg m kg m kg m m
are the masses of the mobile platform, wheel, link 1, 
link 2, and link 3, respectively; 1 2 3, , ,p z z zI I I I are the 
moment of inertia of the mobile platform, link 1, link 2, 
and link 3, respectively; wI is the moment of inertia of 
each wheel; 0.145d m the distance between the point 
P and wheels; 0.075R m is the radius of the 
wheels; 1 2 30.1 , 0.2 , 0.1l m l m l m are the lengths of 
the link 1, link 2, and link 3; 1 2 3, ,r r r are the distance 
between joints and the center of mass of links.  

.  
For expression simplicity, abbreviations for sin ,s  

cosc , and 12 1 2 are introduced. By 

selecting the generalized coordinates are selected as 
[ ]Tv mq q q 1 2 3[ ]Tx y , where [ ]Tvq x y   

and 1 2 3[ ]Tmq .  Total kinematic energy can be 
expressed as: 

22 2 2
0 1 1 1

1 1 1( )( )
2 2 2o zT m m x y I I  

1 1
2

2 2 2 2 2 1 2
1 [ ( ) ]
2

m x r s c r c s

12 2 2 2
1 [
2

m y r s s
1

2
2 1 2( ) ]r c c

2 2
2 1 2

1 [( ) ]
2 zI

13 2 2 2
1 [
2

m x l s c

12 1 2( )l c s
13 2 3 23( )r s c  

1
2

3 1 23( ) ]r c s
13 2 2 2

1 [
2

m y l s s  

12 1 2( )l c c
13 2 3 23( )r s s     

1
2

3 1 23( ) ]r c c  

2 2
3 1 2 3

1 [( ) ( ) ]
2 zI .                         (1) 

The potential energy is obtained as follows: 
 

2 2 2sinV m gr 3 2 2 3 2 3sin sin( )m g l r .  (2) 
 
Using the Lagrange-Euler equation, the matrix form for 
the dynamic equations is written as 
 

( ) ( , ) ( ) ,T
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1 2 3[ ]Tr l , 0
0 0

T
T vAA , v

m
, and                                     

3 3

2 3

0
0

v

m

B
B

B
. (3) can be rewritten as 

v vm v v vm v v dv

mv m m mv m m m dm

M M q C C q G
M M q C C q G

            

0 0
0 0 0

T
v v vv

m m m

B A
B

,              (4) 

 
where ( )M q is a symmetric and positive definite inertia 
matrix; ( , )C q q is a matrix of velocity-dependent 
centripetal and Coriolis forces; ( )G q is a gravitational 
vector; d is a bounded unknown disturbance including 
unmodelled dynamics and exogenous disturbance; B is 
the input transformation matrix; and is an input torque 
vector.    
Property 1. The inertia matrices M are symmetric, 
positive definite, and bounded. The norms of C are also 
bounded. 
Property 2. The matrices 2M C are skew-symmetric 
because of the suitable definition of the corresponding 
inertia and Coriolis matrix. 
Therefore, this modeling method goes through the 
complex transformation calculation inevitably to 
remove the Lagrange multiplier. The resulting dynamic 
equations become complicated as the DOF of the 
attached manipulator increases. 
 
2.2 Kinematics of the mobile robot platform 
The nonholonomic constraint for the mobile robot is 
that the robot can only move in the direction normal to 
the axis of the driving wheels, i.e., the mobile drives 
under the condition of pure rolling without slipping. 
Therefore, the three constraints can be expressed as: 
 
  cos sin 0y x ,           (5) 
 
By selecting [ ]Tvq x y as the generalized 
coordinates of the mobile platform, the constraint can 
be expressed as follows: 
 
  ( ) 0v v vA q q ,            (6) 
 
where 

( ) sin cos 0v vA q .                         (7) 
The matrix ( )vJ q is taken as the basis for the null space 

of ( )A q , ( ) ( ) 0T T
v v v vJ q A q , and ( )vJ q can be 

expressed as: 
 

0
( ) 0

0 1
v v

c
J q s .                                        (8) 

 
A reference to the mobile platform generates a 
trajectory for the actual platform to follow: 
 

( )vr v v vrq J q ,            (9) 
 

where [ ]Tvr r r rq x y denotes the desired time- 
varying position, orientation trajectory and 

[ ]Tvr r rv  denotes the reference time- varying 
linear and angular velocity. It is necessary to find the 
appropriate velocity control law [ ]Tvc c cv , such 
that v vrq q as t . The trajectory tracking 
problem is to track a reference mobile robot with a 
posture [ ]Tvr r r rq x y . Therefore, we define the 
tracking error between the actual and desired posture 
as: 
 

r

v vr v r

r

x x
q q q y y .                         (10) 

 
The posture tracking error can be expressed as: 
 

0
0

0 0 1

x

ve x v

e c s
q e s c q

e
,            (11) 

 
where xe , ye , and e denote the tangential, normal, and 
orientation tracking errors of the mobile platform and 
manipulator, respectively. The error rate can be 
obtained as: 
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y rx

y x r
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v e v ee
e e v e
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.           (12) 

 
The target or command velocity is given as: 
 

cos
sin

r x xc
c

r y r y rc

v e k ev
k v e k v e

,          (13) 

 
where ,x yk k ,and k are positive constants and 0rv . 
This is called the extended kinematic control for  
mobile platform with link 1. If the perfect velocity 
tracking is achieved as 
 

c
vc

c

v v
,                           (14) 

 
the kinematic model is then asymptotically stable with 
respect to the reference trajectory: 
 

[ ] 0T
ve x x xq e e e as t .                   

 
However, in the proposed model, this kinematic 

technique is not required and the controller structure is 
simplified.  
 

3. Design of Finite-Time Controller Design and 
Stability Analysis 

3.1 Design of a finite-time SMC for a mobile 
platform 

In (4), the mobile dynamics is separated as follows: 
 
    T

v v v v v v v v vM q C q F B A ,           (15) 
 

where v vm m vm m dvF M q C q . From (28), we have 

v v v v vq J v J v . Therefore, (28) can be written as 
 

( ) T
v v v v v v v v v v vM J v M J C J v F B A .    (16) 

 
Because of ( ) ( ) 0T T

v v v vJ q A q , multiplying ( )T
v vJ q into 

the left side of (16) gives 
 

v v v v v v vM v C v F B ,           (17) 
 

where T
v v v vM J M J , ( )T

v v v v v vC J M J C J , 
T

v v vF J F , and T
v v vB J B . 

 
Assumption 1. There are constants that satisfy the 
following boundedness: 
 
 , ,v vm v vc v vfM C F ,           (18) 
 
where , , ,vi i m c f are positive constants.  
Consider the following signal: 
 

 1 0
( ) v

t
v vd v vr v sig e d ,           (19) 

 

where 1 1( ) [ ( ), ( )]vvv T
v v vsig e e sign e e sign e and 

0 1v is a constant. We then obtain the following 
 
 1 ( ) v

v vr v vr v sig e .               (20) 
 
The finite-time sliding mode surface vs is defined as 
 

 
1 0

( ) v

v v v
t

v vr v v

s v r

v v sig e d
  

1 0
( ) v

t
v v ve sig e d .            (21) 

Using (19), (20), and (21), it follows that 
 

v v v v v vM s M v M r  
          v v v v v v vC v F B M r  

( )v v v v v v v vC r s F B M r  

v v v v v v v v vC s M r C r F B .                (22) 
 
We define the Lyapunov function as follows: 
 

2 2 1 cos1 1 ( )
2 2

T
v v v v x y

y

e
V s M s e e

k
.         (23) 

Considering (24), (39), and property 2, the time 
derivative of (40) becomes 
 

sin1
2

T T
v v v v v v v x x y y
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The control input is specified as 
  

v veq vr f ,           (25)
 1

2veq v v v vm v vc v vfB s r r ,   (26) 
1( )vr vr v v vs s ,                           (27) 

( ) v
f vf vsig s .            (28)

  
where ( , ) 0vf vf fdiag c c is a constant matrix. 
Substituting (25) into (24), we have 
 

2
11

2
1

( ) vT T
v v v v vr v v v v i vi

i
V s s s s s c s

 
2

32
1

2

sinr
x

k v e
k e

k
                               

2
1

2
1

vT
v v v i i

i
s s c s  

 
2

2 ( 1)/2
min 2 min

1
( ) ( ) ( ) vT

v v v i vi
i

s s c s  

( 1)/2
min 2 min

3 3
max min

2 ( ) 2 ( )
( ) ( )

v
vv i

v v
v i

cV V
c

 

1 3 2 3
v

v v v vk V k V ,                                       (29) 
 

where min 2
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c
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Lemma 1: From the definition of finite-time stability 
[4],[5], the equilibrium point 0s of is globally finite-
time stable; i.e., for any given initial condition 0(0)s s , 
an extended Lyapunov description of finite-time is 
given as the following inequality: 
 

1 2( ) ( ) ( )V s V s V s ,                          (30) 
 

where 1 0 , 2 0 , and 0 1 . ( )V t converges to 
an equilibrium point in finite-time st given by 
 

1
1 0 2

1 2

( )1 ln
(1 )s

V s
t .            (31) 

 
Therefore, using Lemma2 and (84), the finite 
convergence time of the mobile robot is given as 
 

1
1 0 2

1 2

( )1 ln
(1 )

v
v v v v

vs
v v v

k V s kt
k k

.          (32) 

 
 
3.2. Design of a finite-time backstepping controller for 
a mobile platform 
The state space model of the manipulator from (4) can 
be expressed as follows: 
 

3 4x x , 
1

4 m m m m mv m mx M C q G F B ,  

3my x ,                    (33) 
 

where 3 1 2 3[ , , ]Tx , 4 3 1 2 3[ , , ]Tx x , and 

mv mv v mv v dmF M q C q .  
Assumption 2. There are constants that satisfy the 
following boundedness: 
 

, , ,m mm m mc m mg m mfM C G F , 
                             (34) 
where , , , ,mi i m c g f are positive constants. 
The tracking error and 4x are written as 
 

3 3 mrz x y ,                                (35) 

4 4 3z x .                                        (36) 
 

The following Lyapunov function is defined: 
 

1 3 3
1
2

T
mV z z .                              (37) 

 
Using (35) and (36), we then have 
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1 3 3
T

mV z z  
   3 4 3( )T

mrz z y .                                  (38) 
 

We specify the finite-time virtual control as follows: 
 

3
3 3 3 3 3( ) mrc z sig z y ,          (39) 

 
where 3c

1 2 3
( , , ) 0diag c c c is a constant matrix, 

3 1 2 3
( , , ) 0diag is a constant matrix, 

3 31 23
1 1 2 23 3 3 3 3( ) sgn( ), sgn( ),sig z z z z z

3 3
3 33 3sgn( )z z and 30 1is a constant . 

 
Therefore, we have 
 

3 1
1 3 3 3 3 3 3 4

T T
mV c z z z z z  .                 (40)              

     
We redefine the Lyapunov function as follows: 
 

3 1 4 4
1
2

T
m m mV V z M z .                            (41) 

 
We obtain 
 

3 1 4 4 4 4
1
2

T T
m m m mV V z M z z M z  

3 3 3 4 4
T T

mc mg mf m mc z z z x B  

3 3mm z .                                            (42) 
 

Selecting the finite-time control input and adaptive laws 
as follows: 
 

1
3 4 3 3 4m m mm mc mgB c z z x  

4
4 4( )mf sig z ,           (43) 

 
Then, we obtain 
   

4 4
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3
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2
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m
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m
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k  , and 

min[( 1) / 2], 3,4m i i . Therefore, using 
Lemma1, the finite convergence time of the 
manipulator control system is given as 
  

1
1 0 23

1 2

( )1 ln
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m
m m mm

ms
m m m

k V z k
t

k k
. 

      
      

4. Simulation Example 

To validate the proposed control scheme, the infinite-
time backstepping controller (BSC) and finite-time 
backstepping controller (FBSC) with infinite-time SMC 
(SMC) and finite-time SMC(FSMC) were designed. 
Simulation results of each control system for the mobile 
manipulator system are described in Figs. 2 and 3, 
where the proposed finite-time control reveals more fast 
convergence performance than the infinite-time based 
control sytems. 
 

 
                                                (a) 

 
                                                  (b) 
                                                    
Fig. 2.   Simulation results of the mobile platform. (a) 
Tracking outputs. (b) Tracking errors.  
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                                          (a) 

 

                                           (b) 

 

5. Conclusion 

Finite-time SMC and backstepping control schemes to 
guarantee the fast error convergence and small tracking 
error performance for a mobile-manipulator system are 
proposed. A finite sliding mode surface and a virtual 
finite-time error surface are defined to obtain finite-
time performance. The finite-time convergence is 
proved by the finite-time stability analysis of Lyapunov 
function. Simulation for a mobile manipulator system 
confirms the theoretical proposal. 
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