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Abstract 

We scaled up a bio-inspired control architecture for the motor control and motor learning of a real modular robot. In 
our approach, the Locally Weighted Projection Regression algorithm (LWPR) and a cerebellar microcircuit coexist, 
forming a Unit Learning Machine. The LWPR optimizes the input space and learns the internal model of a single 
robot module to command the robot to follow a desired trajectory with its end-effector. The cerebellar microcircuit 
refines the LWPR output delivering corrective commands. We contrasted distinct cerebellar circuits including 
analytical models and spiking models implemented on the SpiNNaker platform, showing promising performance and 
robustness results. 
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1. Introduction 

Understanding the human brain is one of the greatest and 
most appealing challenges facing scientific research. 
Therefore, initiatives such as the Human Brain Project1 
(HBP) were conceived to encourage the delivery of 
beneficial breakthroughs for society and industry. The 
HBP unites the effort of numerous research centers and 
universities involving multiple disciplines and goals in 
the form of 12 subprojects. In particular, our group is 
framed within the subproject 10 focused on 
neurorobotics.   
Robots lack the adaptability and precision of human 
beings towards uncertain or unknown environments. In 
contrast, the brain accomplishes tasks in an admirable 
way allowing smooth movements with a low power 
consumption. As a result, studying how we control our 

bodies in uncertain or unknown environments, how we 
coordinate smooth movements and the mechanisms of 
motor control and motor learning of the central nervous 
system (CNS) has become of interest towards the 
development of bio-inspired autonomous robotic systems.  

1.1. The cerebellum 

Among the distinct parts of the brain, the cerebellum 
stands out due to its key role in modulating accurate, 
complex and coordinated movements, acting as a 
universal learning machine2. Its contributions include the 
neural control of bodily functions, such as postural 
positioning, balance or coordination of movements over 
time3. Thus, understanding and mimicking the cerebellar 
mechanisms through bio-inspired architectures are 
interesting processes in the development of innovative 
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robotic systems capable of carrying out complex and 
accurate tasks in varying situations (See Refs. 4-6).   
Following this motivation, we took inspiration from the 
cerebellum for the motor control and learning of a real 
modular robot. For this purpose, we used a bio-inspired 
control architecture which combines machine learning 
and a cerebellar microcircuit. The cerebellar models were 
simplifications of the real biological microcircuit 
including only the Purkinje, granule and deep cerebellar 
nuclei cells, and the parallel, mossy and climbing fibers. 
Moreover, we considered three cerebellar models, 
including spiking and non-spiking approaches, aiming at 
enlightening when to use which model and establishing 
the grounding for our future research. The result was a 
compliant robot module that by means of a bio-inspired 
approach was able to learn how to trace out a circular 
trajectory with its end-effector. 

2. Material and Methods 

In this section, we address the modular robot, our 
modular control approach and the Machine Learning 
technique utilized. 

2.1. The modular robot: Fable 

The target robotic platform is the modular robot called 
Fable7. Fable is based on the combination of self-
contained modules which can work independently or 
collaborate in modular configurations. Due to a low lag 
radio communication link to the modules the user can 
program the distributed robot modules at different levels 
of abstraction as if they were centralized and connected 
directly to the computer. To do so, the communication is 
done via a radio dongle addressing each module with an 
ID and a radio channel. 

 
Fig. 1. The robot Fable. An example of a modular configuration 
comprising four actuated modules and a head module endowed 
with ultrasound sensors. 

2.2. The modular approach 

Scientific research studies on the cerebellum such as Refs. 
8-9, describe it as a set of adaptive modules, called 
microcomplexes, which represent the minimal functional 

unit and show a uniform almost crystalline 
microcircuitry10. Thus, we decided to use its structure to 
control a robot module in a generic manner. 
Two microcomplexes were used to command the joints 
of a 2-DoF module. Each cerebellar output was linked to 
one joint as it happens in our body, where one motor cell 
commands one motor unit. 
 

 
Fig. 2. Modular scheme of the connections between the 
computer, the modular robot Fable and the neuromorphic 
SpiNNaker platform, which was used for the implementation of 
the spiking cerebellar model.  

 

2.3. The bio-inspired modular control architecture 

In order to perform the motor control and learning of a 
Fable module, we chose the Adaptive Feedback Error 
Learning (AFEL) architecture4 shown in Fig. 3. 
The trajectory generation block generates the desired 
joint angles and velocities (Qd, Q̇d) by inverse kinematics.  
On the one hand, the AFEL scheme guarantees the 
stability of the system by means of a control loop in 
which a Learning Feedback (LF) controller4 is 
implemented. The LF overcomes the lack of a precise 
robot morphology dynamic model ensuring stability and 
adjusting its output torque through a learning rule after 
consecutive iterations of the same task. Its gains were 
heuristically tunes to Kp = 7.5, Kv = 6.4 and Ki = 1 for 
the Fable module.   
On the other hand, the AFEL architecture is endowed 
with a ULM, comprised by the LWPR algorithm and a 
cerebellar circuit. The ULM performs a feedforward 
control of the robot module. The LWPR is in charge of 
abstracting the internal model of the robot, while the 
cerebellar microcircuit refines the output delivering 
corrective torques. 
 

P - 34 



 A Combination of Machine 
 

© The 2017 International Conference on Artificial Life and Robotics (ICAROB 2017), Jan. 19-22, Seagaia Convention Center, Miyazaki, Japan 
 

 
Fig. 3. The AFEL control architecture. The AFEL control 
architecture embeds a ULM which acts as a feed-forward 
controller while it abstracts the internal model of the robot 
module.   

 
 
The cerebellar microcircuitry considered three cases. 
Case 1, based on Ref. 4, included only the Purkinje cells 
whose learning rule is based on the heterosynaptic 
covariance learning rule11 in the continuous form and 
adjusted by an error signal τfb. In Case 2 we included the 
Deep Cerebellar Nuclei (DCN) cells, adding two extra 
synaptic plasticities whose learning rules were inspired 
by Ref. 12.  
In case 3 we implemented a simplified spiking cerebellar 
model using the neuromorphic platform SpiNNaker13, 
consisting of Purkinje cells and DCN cells but without 
considering recurrent or inhibitory synapses.  

2.4. The LWPR algorithm 

The LWPR algorithm14 creates and combines N linear 
local models and feeds the sensorimotor inputs (Qd, Q̇d, 
Q, Q̇) of the robot including desired and real values to 
them. Thereafter, the LWPR incrementally divides this 
sensorimotor input space into a set of receptive fields 
(RFs) performing an optimal function approximation. 
The RFs are represented by a Gaussian weighting kernel 
(Eq. 1) which computes a weight in each k-th local unit, 
for each xi data point according to its distance to the ck 
center of the kernel. 
 

= (  )   (  )                (1) 
 

The weight measures how often an item xi of the data falls 
into the validity region of each linear model, 
characterized by a positive definite matrix Dk, called 
distance matrix. 
The LWPR conveys the weights to the cerebellar circuit 
and at the same time, it delivers a torque output computed 
as the weighted mean average of the linear local model's 
contributions.  
We chose the LWPR algorithm for three reasons: to 
optimize the input space to enhance learning speed and 
accuracy; since it can substitute and optimize the role of 
a certain group of cells of the cerebellum, called granule 
cells; and due to its capability of learning incrementally 
on-line. 

3. Results 

We tested the control architecture using the three 
cerebellar model cases described in Section 2.3 by 
commanding the robot to trace out a circular trajectory 
with its end-effector. The tests considered the normalized 
mean square error (nMSE) of the position of the joints 
with respect to the desired positions. First, the 
performance test consisted in following a circular 
trajectory with constant amplitude and spin frequency 
(see Fig. 4).  
 

 
Fig. 4. Performance test: Circular trajectory with constant 

amplitude and spin frequency. 

 
 
Secondly, we carried out two robustness tests (see Figs. 
5 and 6) where we considered trajectories that varied they 
amplitude keeping the spin frequency constant, and 
thereafter, trajectories that kept the amplitude constant 
but varied their spin frequency (0.5-1Hz). 
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Fig. 5. Robustness test: Using three distinct amplitude values. 

 
Fig. 6. Robustness test: Varying spin frequency (0.5-1Hz). 

 

4. Conclusions 
We combined the LWPR algorithm and a cerebellar 
circuit for the motor control and learning of a real robot 
module. Furthermore, we implemented three distinct 
cerebellar models: two non-spiking and one spiking 
using the neuromorphic SpiNNaker platform.  
Compared to Case 1, Case 2 showed better results in the 
performance test while keeping similar results in both 
robustness tests. Case 3 did not show improvements with 
respect to the non-spiking models, but since its circuitry 
was quite simple there is much room for promising 
further research. Future research will exploit the potential 
of more detailed spiking models where inhibitory and 
recurrent synapses will take place and explore the control 
of several robot modules using SpiNNaker.  
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