

© The 2017 International Conference on Artificial Life and Robotics (ICAROB 2017), Jan. 19-22, Seagaia Convention Center, Miyazaki, Japan

A multithreaded algorithm of UAV visual localization based on a 3D model of environment:

implementation with CUDA technology and CNN filtering of minor importance objects

Alexander Buyval, Mikhail Gavrilenkov

Department of computer science,

Bryansk State Technical University¹,7 Oktyabrya boulevard, Bryansk, 241035,Russian Federation

Evgeni Magid

Intelligent Robotic Systems Laboratory, Higher Institute for Information Technology and Information Systems (ITIS),

Kazan Federal University², 35 Kremlyovskaya street, Kazan, 420008, Russian Federation

E-mail: alexbuyval@gmail.com, gavrilenkov@umlab.ru, dr.e.magid@ieee.org

¹http://iipo.tu-bryansk.ru² http://kpfu.ru/eng/itis

Abstract

Visual based navigation plays an important role in localization and path planning, especially in GPS-denied

environments. This paper presents a visual based localization algorithm for a UAV within an indoor environment.

The algorithm uses multithreaded computing CUDA technology and CNN-preprocessing filtering, which is

responsible for filtering out dynamic objects. The algorithm is simulated in ROS/Gazebo environment with two

different approaches – one uses CPU only and the other uses CPU and GPU - and their performance is compared.

Keywords: localization of UAV; particle filter; ROS; Gazebo, CUDA; CNN.

1. Introduction

Robot self-localization and simultaneous localization and

mapping (SLAM)1 play important role in path planning

and navigation for multiple purposes, including such

broad fields as service robotics, industrial robotics,

search and rescue robotics, and others2. Within indoor

environment, which are typically GPS-denied, visual

localization is often a natural substitution of a GPS

approach. Due to visual sensors’ long range, high

resolution, low energy consumption, and affordable price

visual localization is often preferred over laser range

finder or sonar based localization solutions. Selection of

a passive visual sensor ranges from cheap and simple

monocular cameras to stereo or depth cameras, like

Kinect, or event-driven cameras. We may distinguish two

typical subclasses of visual localization methods: the first

subclass uses special visual markers with known

positions and thus requires some additional marking of

environment prior to its use; the second subclass uses

native visual features.

This paper focuses on visual localization approach,

which uses object edges as key features, and proposes

several improvements to a particle filter based algorithm.

The algorithm uses multithreaded CUDA technology and

CNN-preprocessing filtering to exclude dynamic objects.

We assume that while an initial 3D model of environment

is available, the scene may undergo minor dynamical

changes, e.g. new objects may appear in the scene as the

time passes. The localization is performed in two steps.

Initially, a neural filtering module detects new objects in

the scene and filters them out. Next, a multithreaded

edge-computing module processes filtered data and

compares it with the initial model. The algorithm is

simulated in ROS/Gazebo environment with two

P - 356

mailto:buyval@gmail.com,%20gavrilenkov@umlab.ru

Alexander Buyval, Mikhail Gavrilenkov, Evgeni Magid

© The 2017 International Conference on Artificial Life and Robotics (ICAROB 2017), Jan. 19-22, Seagaia Convention Center, Miyazaki, Japan

different approaches – one uses CPU only and the other

uses CPU and GPU – and their performance is compared.

2. Basic localization algorithm

To solve a localization problem our system uses image

edges as visual features. Based on location model, it

compares a received from a camera real image and a

simulated image of a pre-stored 3D model. The algorithm

considers a number of robot position hypotheses and

renders a set of images from the 3D model that

correspond these hypotheses. Each image corresponds to

an image that would be obtained in the estimated point

under a particular hypothesis. Thus, at each algorithm

iteration, we compare one image from the camera to a set

of simulated images, estimate edge matching between

them and a level of their similarity.

Edge features are formed from typical elements of

indoor environment: conjunctions of walls, ceiling and

floor, window and door frames, etc. Such edges are rather

steady features. They are steady in time and, as a rule,

illumination changes do not influence their perception.

Experimental work showed that it is enough to consider

these basic elements, which in turn significantly

simplifies a 3D model of the room.

2.1. Using a particle filter for robot localization

For processing of images and locomotion sensory data,

which are followed by localization hypotheses, we use

particle filter approach that has proven to perform well in

similar tasks. This approach provides a reasonable set of

location hypotheses and allows for nonlinear models of

the system and sensory input.

2.2. The particle filter measurement model

To estimate each hypothesis probability (a particle),

edges from the on-board camera images are compared

with edges of synthetic images from the 3D model,

applying the nearest edges method. This method

estimates edges’ similarity using a set of line normals that

are constructed from synthetic images’ edges3-5. Figure 1

presents the result of rendering a synthetic image of a

room at the position, which corresponds to a particular

hypothesis. Edge features, which have been found in the

synthetic image and correspond to real world edges, are

shown in green; blue lines depict edges of the real world

camera image, projected onto the synthetic image; line

normals are shown as red segments. The algorithm uses

the extracted edges to perform the following calculations:

(i) (Each) line weight calculated as follows:

 𝑔(𝑑) = 𝑒𝑥𝑝 (−
𝑑2

2𝜎2
), (1)

where d is the normal’s length, σ is the parameter that

determines the weight of the normal and depends on the

normal length d. Parameter σ allows to scale (to increase

or decrease) the influence of long normals.

(ii) Total weight is calculated as follows:

 𝑙 =
∑ 𝑔(𝑑𝑖)
𝑆
𝑖=0

𝑆
, (2)

where S is the total number of lines in the simulated

image.

(iii) Total probability hypotheses is calculated

by combining the weights of each line:

 𝑊 =∝∙ 𝑒𝑥𝑝 (𝑘
∑ 𝑙𝑛
𝑚
𝑛=0

𝑚
), (3)

where 𝑚 is the count of lines, and ∝, 𝑘 are empirically

established parameters.

3. Particle filter implementation

The most important particle filter task is updating the

particle weights. At the first stages of the algorithm, we

detect edges within an image and find straight lines. We

implemented the system as a robot operating system

(ROS6) package, and a number of computer vision

functions from OpenCV library were utilized. The

system uses a constant number of particles, which allows

Fig. 1. Calculation of images similarity using edges.

P - 357

A multithreaded algorithm of

© The 2017 International Conference on Artificial Life and Robotics (ICAROB 2017), Jan. 19-22, Seagaia Convention Center, Miyazaki, Japan

static memory allocation and decreases memory

management time.

3.1. Comparative analysis of the CPU and GPU

implementations

Figure 2 presents a flowchart of particle weights

calculation, which employs eq.(1-3). The main drawback

of the algorithm is its complexity of O(N*K*M), where

N is a number of particles, K is a number of straight

segments within a simulated image, M is a number of

segment normals for a single straight line.

We parallelize the algorithm with NVIDIA’s CUDA

technology, which allows to receive a parallel computing

system that works according to SIMT-principle (Single-

Instruction, Multiple-Thread), when one instruction is

simultaneously executed by multiple independent threads

(Fig.3). We apply CUDA technology for particle weight

calculation through usage of a separate block for each

particle and separate GPU core for each calculation of

normal line’s weight (Fig.4).

3.2. Simulation results

We implemented two versions of the system in ROS: one

uses CPU only, while the other employs both CPU and

GPU for calculations. Experiments were performed in

ROS/Gazebo environment. Table 1 presents the two

implementations’ comparison within four different

experiments: N denotes a number of the experiment, tCPU

and tGPU denote calculation time in ms for CPU only

system and CPU with GPU system implementation

respectively, ratio denotes the ratio of tCPU to tGPU. The

later system (CPU with GPU) demonstrated significantly

better execution time, which surpassed the CPU-only

system in almost 17 times in average.

Table 1. Performance comparison results, ms.

N 1 2 3 4

tCPU 123,6 102,83 150,12 131,84

tGPU 7,39 6,54 8,44 7,45

 Ratio 16,7 15,7 17,7 17,6

4. Neural image filtering

The presented approach works well when a 3D model of

environment is static and almost identical to the actual

environment. However, in real world scenarios, most

scenes are rather dynamic, i.e. new objects that were not

captured during the 3D model building process appear

and may even move through the actual environment (for

example, the black sofa and the PC blocks in Fig.5 are

new objects). To improve robot localization in such cases,

all new and moving objects should be excluded from the

scene analysis. Yet, if many temporary objects are

excluded, too many edges (that belong to these objects)

Fig. 4. The scheme of calculating the weights of the particles

using a CPU together with GPU scheme.

Fig. 2. The scheme of calculating the weights of the particles

using a CPU only.

Fig. 3. CUDA threads hierarchy.

P - 358

Alexander Buyval, Mikhail Gavrilenkov, Evgeni Magid

© The 2017 International Conference on Artificial Life and Robotics (ICAROB 2017), Jan. 19-22, Seagaia Convention Center, Miyazaki, Japan

may be excluded as well and there is a risk of obtaining

a very small number of detected edges.

One of the most effective ways to find objects within

an image is to employ a convolutional neural network

(CNN). To initialize and train, these networks use image

databases, which form a dictionary with each word

corresponding to a graphical image7. The properly

adjusted and trained CNN allows finding objects and

excluding them from an image in real time. At the

preliminary stage, the CNN preprocesses data prior to

edge detection in order to eliminate potentially dynamic

objects within the environment. Next, edge detection is

performed for an “empty” room, followed by robot

localization. Figure 5 demonstrates CNN image

preprocessing results, where the black sofa (i.e., a

“dynamic” object) was properly detected. CNN returned

a two-dimensional mathematical description of an object,

and the image area that belongs to the sofa object was

eliminated from further processing.

Object detection and identification time is

proportional to system hardware capabilities. After

successful object detection, as a result of learning process,

the CNN weights are redistributed. For all further

appearances of the sofa object CNN performs quick

identification in real time and thus localization process

time decreases significantly.

Integrating such CNN module into a UAV onboard

control system in addition to robot localization would

allow a specific object detection, tracking a moving

object8 and other useful functionality.

5. Conclusions

This paper focuses on visual localization approach,

which uses environment edges as key features. Our

approach compares an obtained from a camera image

with a simulated image of indoor environment’s 3D

model. We suggested a particle filter based algorithm

improvement through CNN-preprocessing filtering,

which eliminates dynamic objects from an image, and

usage of GPU in UAVs localization system. Using

parallel threads allowed increasing of localization system

speed in almost 17 times in average. In addition, CNN

filtering decreased negative influence of dynamic objects

on localization process.

Acknowledgements

Part of the work was performed according to the Russian

Government Program of Competitive Growth of Kazan

Federal University.

References

1. A. Buyval, I. Afanasyev and E. Magid, Comparative

analysis of ROS-based SLAM-related methods for

autonomous indoor navigation, in Int. Conf. on Machine

Vision (Nice, France, 2016)

2. E. Magid and T. Tsubouchi. Static Balance for Rescue

Robot Navigation: Discretizing Rotational Motion within

Random Step Environment, in Lecture Notes in Artificial

Intelligence, 6472, (2010), pp. 423-435.

3. S. Nuske, J. Roberts and G. Wyeth, Outdoor visual

localization in industrial building environments, in IEEE

Int. Conf. on Robotics and Automation, (Pasadena, CA.,

2008), pp. 544-550.

4. S. Nuske, J. Roberts and G. Wyeth, Robust outdoor

visual localization using a three‐dimensional‐edge

map, in J. of Field Robotics 26(9), (2009),pp. 728-756.

5. A. Buyval and M. Gavrilenkov, Vision-based pose

estimation for indoor navigation of unmanned micro

aerial vehicle based on the 3D model of environment, in

IEEE Int. Conf. on Mechanical Engineering, Automation

and Control Systems (Tomsk, Russia, 2015).

6. E. Fernandez, S. Crespo, A. Mahtani and A. Martinez,

Learning ROS for Robotics Programming Second

Edition, (Birmingham, UK, 2015).

7. J. Redmon and S. D. Allen, You only look once: Unified,

Real-Time Object Detection. arXiv preprint arXiv:

1506.02640v4 (2015).

8. G. Klein and D. Murray,Full-3D edge tracking with a

particle filter, in British Machine Vision Conference,(UK,

Edinburgh,2006).

Fig. 5. Example of objects excluding by CNN: the black sofa

(in red rectangular) and the PC blocks (in blue rectangular).

P - 359

