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Abstract 

Visual based navigation plays an important role in localization and path planning, especially in GPS-denied 

environments. This paper presents a visual based localization algorithm for a UAV within an indoor environment. 

The algorithm uses multithreaded computing CUDA technology and CNN-preprocessing filtering, which is 

responsible for filtering out dynamic objects. The algorithm is simulated in ROS/Gazebo environment with two 

different approaches – one uses CPU only and the other uses CPU and GPU - and their performance is compared. 
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1. Introduction 

Robot self-localization and simultaneous localization and 

mapping (SLAM)1 play important role in path planning 

and navigation for multiple purposes, including such 

broad fields as service robotics, industrial robotics, 

search and rescue robotics, and others2. Within indoor 

environment, which are typically GPS-denied, visual 

localization is often a natural substitution of a GPS 

approach. Due to visual sensors’ long range, high 

resolution, low energy consumption, and affordable price 

visual localization is often preferred over laser range 

finder or sonar based localization solutions. Selection of 

a passive visual sensor ranges from cheap and simple 

monocular cameras to stereo or depth cameras, like 

Kinect, or event-driven cameras. We may distinguish two 

typical subclasses of visual localization methods: the first 

subclass uses special visual markers with known 

positions and thus requires some additional marking of 

environment prior to its use; the second subclass uses 

native visual features.  

This paper focuses on visual localization approach, 

which uses object edges as key features, and proposes 

several improvements to a particle filter based algorithm. 

The algorithm uses multithreaded CUDA technology and 

CNN-preprocessing filtering to exclude dynamic objects. 

We assume that while an initial 3D model of environment 

is available, the scene may undergo minor dynamical 

changes, e.g. new objects may appear in the scene as the 

time passes. The localization is performed in two steps. 

Initially, a neural filtering module detects new objects in 

the scene and filters them out. Next, a multithreaded 

edge-computing module processes filtered data and 

compares it with the initial model. The algorithm is 

simulated in ROS/Gazebo environment with two 
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different approaches – one uses CPU only and the other 

uses CPU and GPU – and their performance is compared. 

2. Basic localization algorithm 

To solve a localization problem our system uses image 

edges as visual features. Based on location model, it 

compares a received from a camera real image and a 

simulated image of a pre-stored 3D model. The algorithm 

considers a number of robot position hypotheses and 

renders a set of images from the 3D model that 

correspond these hypotheses. Each image corresponds to 

an image that would be obtained in the estimated point 

under a particular hypothesis. Thus, at each algorithm 

iteration, we compare one image from the camera to a set 

of simulated images, estimate edge matching between 

them and a level of their similarity. 

Edge features are formed from typical elements of 

indoor environment: conjunctions of walls, ceiling and 

floor, window and door frames, etc. Such edges are rather 

steady features. They are steady in time and, as a rule, 

illumination changes do not influence their perception. 

Experimental work showed that it is enough to consider 

these basic elements, which in turn significantly 

simplifies a 3D model of the room. 

2.1. Using a particle filter for robot localization 

For processing of images and locomotion sensory data, 

which are followed by localization hypotheses, we use 

particle filter approach that has proven to perform well in 

similar tasks. This approach provides a reasonable set of 

location hypotheses and allows for nonlinear models of 

the system and sensory input. 

2.2. The particle filter measurement model  

To estimate each hypothesis probability (a particle), 

edges from the on-board camera images are compared 

with edges of synthetic images from the 3D model, 

applying the nearest edges method. This method 

estimates edges’ similarity using a set of line normals that 

are constructed from synthetic images’ edges3-5. Figure 1 

presents the result of rendering a synthetic image of a 

room at the position, which corresponds to a particular 

hypothesis. Edge features, which have been found in the 

synthetic image and correspond to real world edges, are 

shown in green; blue lines depict edges of the real world 

camera image, projected onto the synthetic image; line 

normals are shown as red segments. The algorithm uses 

the extracted edges to perform the following calculations: 

 

(i) (Each) line weight calculated as follows: 

 𝑔(𝑑) = 𝑒𝑥𝑝 (−
𝑑2

2𝜎2
), (1) 

where d is the normal’s length, σ is the parameter that 

determines the weight of the normal and depends on the 

normal length d. Parameter σ allows to scale (to increase 

or decrease) the influence of long normals. 

 

(ii) Total weight is calculated as follows: 

 𝑙 =
∑ 𝑔(𝑑𝑖)
𝑆
𝑖=0

𝑆
, (2) 

where S is the total number of lines in the simulated 

image. 

 

(iii) Total probability hypotheses is calculated 

by combining the weights of each line: 

 𝑊 =∝∙ 𝑒𝑥𝑝 (𝑘
∑ 𝑙𝑛
𝑚
𝑛=0

𝑚
), (3) 

where 𝑚 is the count of lines, and ∝, 𝑘 are empirically 

established parameters. 

3. Particle filter implementation 

The most important particle filter task is updating the 

particle weights. At the first stages of the algorithm, we 

detect edges within an image and find straight lines. We 

implemented the system as a robot operating system 

(ROS6) package, and a number of computer vision 

functions from OpenCV library were utilized. The 

system uses a constant number of particles, which allows 

 

Fig. 1.  Calculation of images similarity using edges. 
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static memory allocation and decreases memory 

management time.  

3.1. Comparative analysis of the CPU and GPU 

implementations 

Figure 2 presents a flowchart of particle weights 

calculation, which employs eq.(1-3). The main drawback 

of the algorithm is its complexity of O(N*K*M), where 

N is a number of particles, K is a number of straight 

segments within a simulated image, M is a number of 

segment normals for a single straight line. 

We parallelize the algorithm with NVIDIA’s CUDA 

technology, which allows to receive a parallel computing 

system that works according to SIMT-principle (Single-

Instruction, Multiple-Thread), when one instruction is 

simultaneously executed by multiple independent threads 

(Fig.3). We apply CUDA technology for particle weight 

calculation through usage of a separate block for each 

particle and separate GPU core for each calculation of 

normal line’s weight (Fig.4). 

3.2. Simulation results 

We implemented two versions of the system in ROS: one 

uses CPU only, while the other employs both CPU and 

GPU for calculations. Experiments were performed in 

ROS/Gazebo environment. Table 1 presents the two 

implementations’ comparison within four different 

experiments: N denotes a number of the experiment, tCPU 

and tGPU denote calculation time in ms for CPU only 

system and CPU with GPU system implementation 

respectively, ratio denotes the ratio of tCPU to tGPU. The 

later system (CPU with GPU) demonstrated significantly 

better execution time, which surpassed the CPU-only 

system in almost 17 times in average. 

Table 1.  Performance comparison results, ms. 

N  1 2 3 4 

tCPU  123,6 102,83 150,12 131,84 

tGPU  7,39 6,54 8,44 7,45 

  Ratio  16,7 15,7 17,7 17,6 

4. Neural image filtering 

The presented approach works well when a 3D model of 

environment is static and almost identical to the actual 

environment. However, in real world scenarios, most 

scenes are rather dynamic, i.e. new objects that were not 

captured during the 3D model building process appear 

and may even move through the actual environment (for 

example, the black sofa and the PC blocks in Fig.5 are 

new objects). To improve robot localization in such cases, 

all new and moving objects should be excluded from the 

scene analysis. Yet, if many temporary objects are 

excluded, too many edges (that belong to these objects) 

 

Fig. 4.  The scheme of calculating the weights of the particles 

using a CPU together with GPU scheme. 

 

Fig. 2.  The scheme of calculating the weights of the particles 

using a CPU only. 

 

Fig. 3.  CUDA threads hierarchy. 

P - 358 



Alexander Buyval, Mikhail Gavrilenkov, Evgeni Magid 

 

© The 2017 International Conference on Artificial Life and Robotics (ICAROB 2017), Jan. 19-22, Seagaia Convention Center, Miyazaki, Japan 

may be excluded as well and there is a risk of obtaining 

a very small number of detected edges. 

One of the most effective ways to find objects within 

an image is to employ a convolutional neural network 

(CNN). To initialize and train, these networks use image 

databases, which form a dictionary with each word 

corresponding to a graphical image7. The properly 

adjusted and trained CNN allows finding objects and 

excluding them from an image in real time. At the 

preliminary stage, the CNN preprocesses data prior to 

edge detection in order to eliminate potentially dynamic 

objects within the environment. Next, edge detection is 

performed for an “empty” room, followed by robot 

localization. Figure 5 demonstrates CNN image 

preprocessing results, where the black sofa (i.e., a 

“dynamic” object) was properly detected. CNN returned 

a two-dimensional mathematical description of an object, 

and the image area that belongs to the sofa object was 

eliminated from further processing. 

Object detection and identification time is 

proportional to system hardware capabilities. After 

successful object detection, as a result of learning process, 

the CNN weights are redistributed. For all further 

appearances of the sofa object CNN performs quick 

identification in real time and thus localization process 

time decreases significantly.  

Integrating such CNN module into a UAV onboard 

control system in addition to robot localization would 

allow a specific object detection, tracking a moving 

object8 and other useful functionality.  

5. Conclusions 

This paper focuses on visual localization approach, 

which uses environment edges as key features. Our 

approach compares an obtained from a camera image 

with a simulated image of indoor environment’s 3D 

model. We suggested a particle filter based algorithm 

improvement through CNN-preprocessing filtering, 

which eliminates dynamic objects from an image, and 

usage of GPU in UAVs localization system. Using 

parallel threads allowed increasing of localization system 

speed in almost 17 times in average. In addition, CNN 

filtering decreased negative influence of dynamic objects 

on localization process.   
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Fig. 5.  Example of objects excluding by CNN: the black sofa 

(in red rectangular) and the PC blocks (in blue rectangular). 
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