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Abstract: Many complex patterns are produced by
spatial prisoner’s dilemma such as spatial games [Nowak
& May 92] and spatial strategies [Ishida & Mori 04]. We
have studied an inverse problem of identifying a game by
estimating parameters in the payoff of the game from spa-
tiotemporal patterns.
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1 Introduction

Many spatiotemporal patterns can be found in na-
ture such as ice crystal, a coastal railroad and shells.
A spatial game [1] can produce spatiotemporal pat-
terns. This is an extension of well known Prisoner’s
Dilemma (PD) in a space dimension.

While a game in general is played by two players, a
spatial game is played by multiple players. Each player
is placed at a cell in a lattice and interacts with the
neighbor players. Fig. 1 shows spatiotemporal pat-
terns generated by one dimensional spatial prisoner’s
dilemma.

This paper deals with an inverse problem of esti-
mating parameters of spatial game from spatiotempo-
ral patterns (generated by the spatial game). When
the space is k-dimensional lattice (k is a natural num-
ber), a spatial game can be identified as cellular au-
tomata. A spatial game process can be estimated as a
transition rule of cellular automata from spatial pat-
terns by the rule identification algorithm [3]. Hence
strategies of each player can be inferred by analyzing
the spatiotemporal patterns.

2 Spatial Prisoner’s Dilemma and Spa-
tiotemporal Patterns

2.1 SPD

Tterated prisoner’s dilemma (IPD) iterates pris-
oner’s dilemma N steps. Spatial prisoner’s dilemma
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(SPD) [1, 2] is an extended IPD in spatial axis; i.e.
The SPD is played by multiple players placed in the
neighborhood cells in a lattice space. Here we restrict
ourselves to the case of one dimensional square lat-
tice. In our SPD, a player has a strategy and decides
an action at each step based on its strategy. Each
player plays with neighbor players (including itself).
Score of each play will be calculated from payoff ma-
trix (Table 1) for neighbor players within a radius r.
For example, when » = 1 and the space is one di-
mensional square lattice, the number of neighborhood
players is three. After every interaction, the strategy
of the highest score will be copied to its neighbor play-
ers.

Table 1: Payoff matrix. (T >R >P > S, 2R>T+ S
and 1.0 < b < 2.0 [2])

Adversary
C D
s C| R(1) | S(0)
=(D| T(b) | PO)

All-D and All-C are the base strategies [1]. All-
D (All-C) chooses D (C) every time. In addition to
All-D (All-C), we will study spatial strategies such as
k-D (k-C) [2]. k-D (k-C) strategy chooses D (C) when
the number of players with D (C) in neighborhood
exceeds k. We will also use the strategy code. The 2-

D strategy, for example, can be expressed by a strategy
code CCD (Table 2).

Table 2: Strategy Codes when r = 1 and the space is one
dimensional square lattice

Numberof Din| i 2

neighborhood

Action




2.2 Spatiotemporal generated

by SPD

patterns

Spatiotemporal patterns found in SPD can involve
many interesting ones including fractal patterns. In
fact, Fig. 1 shows spatiotemporal patterns with the
parameter b 1.5 in Table 1.

w b b 4

Figure 1: spatiotemporal patterns generated by one di-
mensional spatial prisoner’s dilemma of All-D v.s. All-C.
White cells cooperation and black defection. Simulation is

carried out in 50 steps with a periodic boundary condition,
with the space size is 300 (one dimensional square lattice)
and the neighborhood radius : r = 1. The pattern above
is a result of All-D v.s. All-C, the pattern middle is that
All-D v.s. DCD and the pattern below is that of 1-D v.s.
DCD. The above pattern is monotonous but the middle
and the below involve fractal patterns.

3 SPD with Single Strategy as DCA

SPD can be identified as deterministic cellular au-
tomata (DCA) with D as 1, C as 0; and neighborhood
radius rc4. Thus we can apply the the rule identi-
fication algorithm [3] on spatiotemporal patterns of
SPD. Table 3 is a result of rule identification. We use
six patterns (Fig. 2) generated by a single strategy
of SPD (without interaction and only action update)
with payoff matrix of Table 1 and the parameter b
1.5. Each strategy has been tested assuming DCA
and roc4 = 1.

When two strategies are involved, rules cannot be
identified as DCA with a binary state and rcy = 1.
Only in the case of All-C v.s. All-D, rules can be
identified as DCA with a binary state and rgyq = 2).
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Table 3: Results of rule identification when single strategy
is used. Rules are represented by Wolfram’s numbering [5].
2-D | CDC | 1-D | DCC | DCD | DDC
160 90 250 5 155 95

Strategy
Rule No.
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Figure 2: Spatiotemporal patterns generated by a single
strategy of SPD with initial random seeds.

4 Estimating the payoff matrix When
All-C v.s. All-D

Fig. 3 shows spatiotemporal patterns of All-C v.s.
All-D when b 1s varied. The lattice size is 30 with
a periodic boundary condition and simulations are
carried out in 30 steps. Cs and Ds are seeded ran-
dom with an equal probability initially. Table 4 lists
the rules identified from the spatiotemporal patterns
of Fig. 3. When 1.0 < b < 1.5, rule is identi-
fied as (FCF4EE30)16 and when 1.5 < b < 2.0 as
(ECFAEF34)16. Thus the rule of SPD with All-C
v.s. All-D can be identified as either (ECF4EFE30)6
or (FCF4EF34)16 when rcq = 1. In other word, we
can estimate the range of the parameter b from spa-
tiotemporal patterns generated by All-C v.s. All-D.

Table 4: Rule identification in the case of All-C v.s. All-D
when the parameter b varied.

b[11]13] 15 [16]17] 19
Rule No. (ECF4EE30)16 | (ECF4EF34)16
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Figure 3: spatiotemporal patterns generated by All-C v.s.
All-D in one dimensional lattice with a periodic boundary
condition.

b=1.7

5 SPD with Multiple Strategies as
PCA

When SPD is analyzed by the probabilistic rule
identification algorithm [3], SPD with multiple strate-
gies can be identified as probabilistic cellular automata
(PCA) with a binary state and rc4 = 2 (Table 5).

Table 5: Rule of PCA. p; indicates the probability of being

D.
[DDDDD [ DDDDC [ --- | CCCCD | CCCCC |

[ pa |

po [ pm [ po |

Table 6 shows identified rules of SPD as a rule of
PCA when All-D v.s. 2-D.

Table 6: SPD identified as a rule of PCA when All-D v.s.
2-D with parameters: lattice size : 500, time steps : 500
steps and b : 1.5. These results are the average of trials of
thousand times.
| Rule (rca = 2) pai, pso, - po |

1.00, 1.00, 0.48, 0.00, 1.00, 1.00, 0.00, 0.00,
0.49, 0.50, 0.46, 0.49, 0.00, 0.49, 0.00, 0.00,
1.00, 1.00, 0.50, 0.00, 1.00, 1.00, 0.49, 0.00,
0.00, 0.00, 0.49, 0.70, 0.00, 0.00, 0.00, 0.00
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6 Estimating the Payoff Matrix with
All-D v.s. Other Strategies using
PCA

Since SPD with All-C v.s. All-D can be identified as
DCA, we can estimate range of the parameter 5. But
other cases (such as All-D v.s. 1-D) cannot be identi-
fied as DCA. However, these cases can be identified as
PCA and we can estimate range of the parameter b as
well (except the case : All-D v.s. 1-D). Fig. 4, 5 and 6
are binary trees showing stimated range of the parame-
ter b in each game. We can find range of the parameter
b by tracing the tree with conditional branches of prob-
ability p;. For example, the parameter b in the case of
All-D v.s. 2D with pg # 0,p1s # 0,p2 = 0,ps = 0 is
estimated within the range of 1.0 < b < 1.5.

All-D v.s. 2D or DCD

p2 #0,ps # 0 p2=0,ps =0

b<1.0

pe # 0,p7 # 0, pe=0p7=0, 10<b<15
P12 # 0,p2s # 0 p12 =0,p2s =0
b>2.0 1.5<b<20

Figure 4: A binary tree showing estimated range of the
parameter b when All-D v.s. 2-D or DCD.

All-D v.s. CDC or DDC

par # 0 p2r =0

b>1.0 b<1.0

Figure 5: A binary tree showing estimated range of the
parameter b when All-D v.s. CDC or DDC.

7 Estimating Strategies from Spa-

tiotemporal Patterns

Since SPD with single strategy can be identified as
DCA, we can infer strategies of each player. Fig. 7
above is a spatiotemporal pattern generated by 1-D
v.s. DCD. Both below left and right figures in Fig.
7 is a part the pattern above. Table 7 lists a result



All-D v.s. DCC

po # 0,p18 # 0,par #

P9 =0,p15 =0,p27 =0

p2 # 0,ps # ()

1.0<b<15
Po # 0,p7 # 0,p2s #0  pg =0,p7 = 0,p2s =0

b>2.0 1.5<b<20

Figure 6: A binary tree showing estimated range of the
parameter b when All-D v.s. DCC.

of the rule identification from the strategy cluster-A,
and Table 8 from the strategy cluster-B. Upper rows
of each table indicate the neighborhood configuration
(i.e. CCC) and lower rows indicate the next state of
the center. The symbol u (unknown) means that the
state cannot be identified from the spatiotemporal pat-
terns. The strategy of cluster-A is 1-D strategy (Table
7), and that of cluster-B is DCD strategy (Table 8).
By analyzing a cluster of the spatiotemporal pattern,
we can infer possible strategies that could generate the
pattern.

Strategy Cluster-A

Strategy Cluster-B

Figure 7: A spatiotemporal pattern generated by 1-D v.s.
DCD (above) and its enlarged clusters (below).

Table 7: Identified rule of the cluster-A.
DDDDDCDCDDCCICDDCDCCCDICCC
DIDIDIul[DI[ICIlufu
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Table 8: Identified rule of the cluster-B.
DDDDDCDCDDCCICDDCDCICCDCCC
DICIDICI[C cCIlD

8 Conclusions

Spatial prisoner’s dilemma (SPD) may be consid-
ered as cellular automata (CA). Since a reverse engi-
neering on spatiotemporal patterns generated by CA
allows recognizing the possible rule generating the pat-
terns, we can likewise infer the possible strategy un-
derlying the game by reverse engineering on the spa-
tiotemporal patterns generated by SPD. We regarded
SPD with single spatial strategy as deterministic cel-
lular automata (DCA); and SPD with multiple strate-
gies as probabilistic cellular automata (PCA). Spa-
tiotemporal patterns generated by SPD include suf-
ficient information to estimate range of parameters of
SPD (hence identifying the game played when an ap-
propriate space-time frame is used).
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