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Abstract

In this paper, energy tophallaxis, distributed au-
tonomous energy management methodology inspired
by social insects and bat behaviour, and its advantage
is shown by a series of computer simulations to ad-
dress the survivability of organized agents group under
dynamics environment with uncertainty. Uncertainty
of organizational agent’s behaviour is represented by
2 Lévy distributions. By controlling energy donation
behaviour based on these distributions carefully, the
survivability of a larger group that traditional works
cannot analyze is examined. As a result, a only small
friendship over organization makes the group’s surviv-
ability improved dramatically.

1 INTRODUCTION

This paper proposes a basic methodology for re-
source assingnment problem in a multiple agents sys-
tem with uncertainty. There is a lot of papers which
discuss resource assingnment problem under condi-
tions of complete infomation. Meanwhile, growing in
popularity of Internet and robotic technology on our
daily life has been accompanied by a marked difficulty
of its efficient management. For example, let us think
about the energy management of many mobile robots.
Usually, their batties are charged by being plugged in.
When the number of plug is restricted or there is not
enough time to be charged, how should we manage
them? It is not easy question because of uncertainty.
Of course, the group of robots are desiged carefully for
some specific tasks but their behaviour is not 100%
known beforehand. Especially, it seems to be very dif-
ficult to predict their energy consumption when they

engage in jobs to interact directly with human. As we
know, human changes its mind frequently. However,
even if there is this innate difficulty, it is undeniable
fact that some methodology that can design resource
allocation under such uncertainty is required.

We have focused attention on trophallaxis.
Trophallaxis is mouth-to-mouth food sharing among
ants[1], bats[5], and other some social animals. Basi-
cally, traditional energy management of robots have
been based on nest like “central sharing”, that is diffi-
cult to share their energy by congestion. On the other
hand, this new energy sharing strategy, energy trophal-
laxis, can provide more flexible energy flow so that
they can survive longer and stable[3][2].

In this paper, we discuss the survivability of a arger
group with trophallaxis type energy sharing. When
the colony is small, the hypothesis that each agent
can transfer its energy to any member directory is rea-
sonable, because the travel cost for reaching a recipi-
ent is negligible. Therefore, when the feeding success
rate, the probability of getting energy from the en-
vironment, is independent, the larger the colony, the
easier it is for its members to survive [3][6].

However, in general, it is difficult to assume this
condition when the colony is large because some agent
pairs must pay considerable travel costs. We show
that this difference is sufficiently critical to result in
members in larger colonies having a shorter life. By
simulation, we show that an increase in the colony size
makes it difficult for agents in a common organization
to survive. Despite this counterproductive scale effect,
we show that trophallaxis is still a good strategy for a
large colony to achieve high survivability, by the law
of large numbers. The scale effect can be solved by
small world trait, which is normally found in ordinary

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 110



Figure 1: An example of high correlation between be-
haviour in the workspace and the organization.

relationships with friends.
This paper is composed as follows. In the next

section, we propose our approach for handling large
colony sizes. Two static networks are introduced: or-
ganization network and friend network. In our frame-
work, agents meet others statistically. We suppose
that all agents belong to the same organization, and
an agent meets others according to a rendezvous prob-
ability, based on the topological distance of the orga-
nization network. When a pair of agents meet, the
richer decides whether it donates energy to the poorer
according to a permission probability, based on the
topological distance of the relationships with friends
in the friend network. Using these two probability
distributions and networks, we can examine a variety
of organizational structures.

In section 3, we briefly explain the trophallaxis
model. We proposed an extension of the vampire bat
energy model [6]. This model is useful because it is
simpler than those of other related works [2][3].

In section 4, using simple computer simulation, the
emerging properties are discussed.

2 THE ORGANIZATIONAL STRUC-
TURE

2.1 Organizational network

This paper examines a large colony. In this case,
the travel cost for some agent pairs is not negligible,
so we assume that energy transfer is conducted when
a pair of agents happen to meet. When the agents
rendezvous, one decides whether to donate energy to
the other.

We suppose that the rendezvous frequency depends

Figure 2: Networks used as organizational structures
:(a) Complete Graph, (b) Regular Graph, (c)Beta
Graph, (d) Random Graph

on the relationship of the agent pair on the organiza-
tion of their colony. Obviously, the frequency of ren-
dezvous is also determined by behaviour, however, in
this paper, we are not interested in particular prac-
tical robot behaviour and tasks. Therefore, we in-
troduce colony organization, rather than some con-
crete behaviour to approximate the frequency of ren-
dezvous. When a colony is well organized, the orga-
nizational structure seems to provide a strong correla-
tion between the working area of the members and the
topological relationship of the organization, as shown
in Fig.1. This figure shows a robot system that the de-
signer wants to realize. The agents on each floor must
work cooperatively, so these agents will have strong
relationships. Obviously, these agents will meet fre-
quently, therefore, the designer will assign the appro-
priate number of robots to build an effective robotic
system. When a well-organized structure is provided,
it is reasonable that the frequency of rendezvous can
be estimated from the topological distance of the or-
ganization structure.

We assume that this each rendezvous takes place
following by a probabilistic function based on their
relative distances within the organizational structure.
The organizational structure is represented by a graph
with undirected links. Each node represents an agent.
We suppose that the distance is the shortest link dis-
tance in the network. Also, the network is static, and
there are no changes during trials. For example, if
an agent is completely exhausted, the corresponding
agent’s node is not alive. However, this void node
does not change the shortest distance calculation for
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Figure 3: Shortest distance distribution of the net-
works adopted in this paper.

other agents. Note that two different networks are
introduced - one for the rendezvous and the other is
for permission probability of donating. However, both
networks use the same notation and distance calcu-
lation method. Later, we describe the details of the
network for judging whether to donate. The organi-
zation network S gives its adjacency matrix A of C .
Now, when a colony C = {i ∈ {1, · · · , n}} is given, if
there is a link between agent i and j, the element aij

of A is 1, otherwise it is 0.
The distance between a pair of agents is calculated

as the shortest distance of A. Let the distance of agent
i and j be d(i, j)(= d(j, i)). The shortest distance is
then deduced by the Dijkstra method.

This paper adopts a complete graph, a lattice graph
(a kind of regular graph), a random graph, and a
β-graph[4], as shown in Fig.2. Figure 3 illustrates
the shortest distance distribution of these graphs for
n=200．

The complete graph corresponds to a small, well
organized structure. Each agent has links to all oth-
ers (Fig.2a), therefore, the distance from any agent to
any other member is 1, which is shortest. This sug-
gests that they all work together in a vicinity.The lat-
tice graph is introduced to represent organizations in
which the members interact well locally. As shown in
Fig.2b, each agent has L equal number of links to its
neighbours. When L=2, they connect as a ring. This
means that there is a less well marked global structure,
but there are strong relationships among neighbours.
Figure 3 shows the shortest distance distribution for
L=4. There are a constant number of agents located in
a range from very close to very far away. The random
graph represents an unorganized organization struc-
ture (Fig.2d). The distance distribution is similar to a
normal distribution. The β-graph [4] is generated by
applying the random rewiring procedure to the lattice
graph noted above. A link of the lattice graph, se-
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Figure 4: Rendezvous probability of α

lected by probability p, is removed and reconnected to
another node. This process is called random rewiring.
Even if this probabilistic procedure causes the net-
work to lose strong connectivity, there is no special
compensation algorithm. Obviously, the graph with
the random rewiring probability of p=0 is the original
lattice graph, and the graph with a random rewiring
probability of p=1 is same as the random graph. This
parameter changes the characteristics, in particular for
the graph with a probability of around p=0.1 is known,
as it has small world characteristics[4]. This property
means that the average distance is slowly increased as
log(n). In Fig.3, the β-graph is made from an L=4
regular graph, and p=0.1 is shown. The degree distri-
bution at L=4 is like that of the original lattice graph,
whereas the distance distribution is completely differ-
ent from the original.

2.2 Rendezvous probability based on the
organization network

Let the distance of agent i and j in a given organi-
zation network be do(i, j)(= do(j, i)). Now we suppose
that the rendezvous probability is defined as the power
function fo of distance do(i, j) as follows.

f(do(i, j)) = m/do(i, j)αo (1)

In the remainder of this paper, m=0.5. αo is a con-
trol parameter. This function has been well studied
in many areas, for example, the Lévy flight probabilis-
tic procedure. In Fig.4, the probability distributions
αo = {2.0, 2.5, 3.0}are shown. If αo is small (αo¡2),
agents too far away still have a high probability of
meeting; when αo is large, for example, αo¿3.0, agents
only meet their closer neighbours.
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3 ENERGY SHARING MODEL AND
ITS EVALUATION

3.1 The Vampire Bat Energy Sharing
Model

This section explains the trophallaxis energy ex-
change procedure. When a pair of agents meet accord-
ing to the rendezvous probability in eq.1, they have a
chance to exchange energy. We adopt a model pro-
posed by [6] for this exchange procedure. This model
is simple and well-grounded because it simulates the
energy exchange procedure of the common vampire
bat, which is a famous example of for trophallaxis [5].

The essence of the model is that each agent tries
to get food once every 24 steps. The feeding success
probability is called the feederate. Now, if agent i
succeeds, its energy ei is fully increased.

ei(t) = emax. (2)

Each agent consumes ecycle per step. If ei < 0, it is
dead. If ei < eneed, agent i requests donations from
richer agents - those who have more energy than ehave.
If a rich agent accepts the request, the recipient re-
ceives thave energy per donation. The exchange loss
during transfer is represented by eefficiency. For ex-
ample, if eefficiency=100, the energy which a donor
loses is the same as that obtained by the recipient;
if the recipient receives no energy, then eefficiency=0.
That is,

edonor(t + 1) = edonor(t)− thave. (3)

erecipient(t + 1) = erecipient(t) + thaveeefficiency/100.
(4)

These parameters are set as follows: ecycle=1,
emax=60, eneed=24, ehave=28, ttransfer=3,
eefficiency=80, feederate =0.7. These are re-
flected in the vampire bat. Under this parameter set,
a donor cannot be a recipient after single donation
because

ehave − ttransfer > eneed. (5)

Therefore, this is called the stable condition.

3.2 Permission probability on the friend
network and donor selection

When an agent is starving (e < eneed), it makes
havelisti which is a set of donor candidates.

As mentioned previously, two networks are intro-
duced in this paper: the organization network, which

controls the rendezvous probability, and the friend net-
work. The judgment as to whether an agent donates
energy when a pair of agents meet is determined by
the permission probability based on the distance be-
tween them in this network. The notation of the friend
network is same as for the organization network. Also,
the same network types are adopted.

Let the distance of agent i and j in the friend net-
work be df (i, j)(= df (j, i)). Now we suppose that
the permission probability is also defined as the power
function ff of distance df (i, j) as follows.

f(df (i, j)) = m/df (i, j)αf . (6)

In the rest of this paper, m=0.5. αf is a control pa-
rameter. When a pair of agents meet, if one is starving
and the other has enough energy to satisfy the stable
condition (see eq.5), the richer one joins the recipient’s
havelist with the probability ff (df (i, j)).

When there is more than one rich agent (e > ehave)
in a recipient’s havelist , their order can cause another
problem. In this model, a donor is selected randomly.
The trophallaxis is executed repeatedly until there are
no starving agents or there are no rich agents in the
starving agent’s havelist .

3.3 Evaluation criteria:survivability

In this model, survivability is employed as the
evaluation criterion. Each simulation is executed for
10×365×24 steps, which corresponds to 10 years - a
sufficiently long span. The ratio of survivors to the
number of initial members is evaluated as the surviv-
ability.

4 COMPUTER SIMULATION

In this section, we show the characteristics of a large
size colony by employing colony size n, the rendezvous
probability of αo, based on the organization network,
and the permission probability of αf , based on the
friend network.

4.1 Complete graph organization with
trophallaxis

First, we conduct a simulation to address the af-
fect of scale on trophallaxis. We use four some-
what small different sized colonies with trophallaxis
n = {15, 20, 25, 35}, and a colony of size n=35 with-
out trophallaxis. All colonies with trophallaxis adopt
the complete graph as their organization and friend
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Figure 5: Survivability of a small colony.
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Figure 6: Size effect of lattice organization colony.

networks, so that a member can get energy from any
other member. Each colony is examined for at least
50 trials and the average survivability for each day is
shown in Fig.5.

The dotted line indicates the survivability of the
colony of 35 agents without trophallaxis. The x axis is
the time (day=step/24) and the y axis is the surviv-
ability. As you see, survivability drops quickly. There
was no trial in which at least one agent survived over
150 days.

The solid lines illustrate the results for the colonies
with trophallaxis. When n=15, the colony can survive
longer than the colony without trophallaxis but for no
trial among 20 trials did at least one agent survive
more than 1250 days. However, colonies larger than
30 agents can survive over 10 years.

This result can be understood as follows. In this
exchange model, each individual’s feeding success rate
is independent and this model assumes that the total
amount of food in the environment is unlimited. In
this case, the number of agents who get food converges
at n ·feederate when n becomes infinite, by the law of
large numbers theorem. Consequently, the probability
of the occurrence of the “less food” state goes to zero.
Therefore, we can say that trophallaxis offers a great
advantage for survival if agents can exchange energy
with any other agent at any time.

4.2 Lattice graph organizations with
trophallaxis

In the previous subsections, we conducted a set of
experiments to address the survivability of trophal-
laxis of ideal colony. In this successive subsections,
lattice networks with L=20 for a more practical large
colony are used mainly. In section 4.2.2, the organi-
zational structure adopts a lattice graph and a friend
network that is a β-graph network, based on the lattice
graph.

4.2.1 Lattice graph friend network with lat-
tice organization

When a pair of agents meet and one is able to donate
energy, first the donor candidate decides whether it
will donate, based on its permission probability ff (d)
(see eq.6.). The parameter αf controls the range of
the donation. When αf is smaller than αo, in eq.1,
the agent gives energy agents who it rarely meets. If
αf is larger than αo, however, it does not donate to
agents who it meets frequently. First, we conduct a
simulation to bring out the effect of the colony size, n.
We used 15 colonies by combining colonies of differ-
ent sizes, n = {25, 50, 75, 100, 150} and three different
organization networks αo = {2.0, 2.5, 3.0}. The friend
network parameter αf of all of these is 2.5. Figure 6
shows the survivability. When the colony size is small
(n=25), they partially survive. Survivability improves
with an increase of n until some limit. After the limit,
it becomes worse, depending on αo.

We think this result is very important because it
indicates that the colony size has an adverse affect on
survival. Even if the feeding success rate is indepen-
dent, the survivability becomes worse as the colony
size increases, when the organizational structure is a
lattice graph.

The reason could be that, in such an organization,
every agents has 20 links to their neighbours. There-
fore, a donor can give its energy to a recipient 10 units
away from it. Obviously, the speed of the diffusion of
energy in this case is faster than for a network with a
smaller number of links, for example L=2 or 3. Thus,
surplus energy moves away from its donor quickly.
Therefore, in the long term, its donation does not
make its neighbour and itself rich. When the colony
size is not too large, namely n=50, as shown in Fig.6,
we suppose that the diffused energy comes back before
it vanishes due to exchange losses, eefficiency. because
it takes few exchanges to make a circuit of the orga-
nization. Therefore, survivability is improved. When
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Figure 7: β-graph friend network over a dense lattice
organization (αo=2.0).
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Figure 8: β-graph friend network over a sparse lattice
organization (αo=2.5).

the colony is too large, the scale effect is lost. More
work is needed to clarify this issue.

4.2.2 β-graph friend network over a lattice or-
ganization

The last section showed that trophallaxis does not
work well in a large lattice graph organizational struc-
ture. We suggested the reason is the quick diffusion of
energy. In this section, we conduct a simulation ad-
dressing this trend. In generally speaking, a β-graph
with a small rewiring probability has high clustering
coefficient. This means that there are many small tri-
angles in the organization. Therefore, it is reason-
able to ask whether this helps retain surplus energy.
Figures 7 and 8 show the survivability of a β-graph

friend network with L=20 over lattice graph organiza-
tion network with L=20, n=100, and αo = {2.0, 2.5}.
In both graphs, the x axis is the rewiring probability.

The effect is impressive. Of all these situations,
the colony with a small rewiring probability, p=0.125,
can survive more consistently than that of one with a
rewiring probability of p=0.0. Although more work
is require to clarify the details of this mechanism,
this high survivability ensures that we can say that
the rewiring procedure can produce successful trophal-
laxis.

5 CONCLUSION

In this paper, the survivability of large colonies with
trophallaxis energy transfer is examined by introduc-
ing two networks: an organization, and a friend net-
work. In a large colony, the travel cost for some agent
pairs is not negligible, so that energy transfer is con-
ducted when a pair of agents happen to meet. The
probability of a rendezvous is determined by the or-
ganization network. After a pair of agents meet, one
decides whether to donate energy, based on its permis-
sion probability, which is defined by the friend net-
work. By this simplified approach, we can examine
the characteristics of survivability for a large colony
with trophallaxis, for example, the scale effects and
unfavourable issues.

Several computer simulations produced the follow-
ing observations: 1) In general, if the colony is small,
survivability improves with an increase of members.
However, even if their feeding success rate is inde-
pendent, their survivability becomes worse with an in-
crease in colony size when their organization structure
is a lattice graph; and, 2) it is possible to deal with this
unfavourable characteristic using the random rewiring
procedure of β-graph, which yields a small world phe-
nomenon.

References

[1] Holdobler B., Wilson E.D. , The Ants, Springer-
Verlag, 1990.

[2] Kubo M., Melhuish C., “Robot Trophallaxis: Man-
aging Energy Autonomy in Multiple Robots,” Pro-
ceedings of Towards Autonomous Robotic Systems
2004. Department of Computer Science University
of Essex Technical Report Series,CSM-415,2004

[3] Melhuish C., Kubo M., “Collective Energy Dis-
tribution: Maintaining the Energy Balance”,
Proceedings of 7th International Symposium
of Distributed Autonomous Robotic Systems
(DARS04),pp. 261-270, 2004

[4] Watts D.,J.,Small Worlds: The Dynamics of Net-
works between Order and Randomness, Princeton
University Press, 1999.

[5] Wilkinson, G.S., “Food sharing in vampire bats”,
Scientific American,pp. 64-70, 1990

[6] Witkowski N., “Energy sharing for swarms mod-
elled on the common vampire bat”, Adaptive Be-
havior,Vol. 15, No. 3, pp. 307-328, 2007

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 115




